244 research outputs found
Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with stereo secchi
We discuss how simultaneous observations by multiple heliospheric imagers can
provide some important information about the azimuthal properties of Coronal
Mass Ejections (CMEs) in the heliosphere. We propose two simple models of CME
geometry that can be used to derive information about the azimuthal deflection
and the azimuthal expansion of CMEs from SECCHI/HI observations. We apply these
two models to four CMEs well-observed by both STEREO spacecraft during the year
2008. We find that in three cases, the joint STEREO-A and B observations are
consistent with CMEs moving radially outward. In some cases, we are able to
derive the azimuthal cross-section of the CME fronts, and we are able to
measure the deviation from self-similar evolution. The results from this
analysis show the importance of having multiple satellites dedicated to space
weather forecasting, for example in orbits at the Lagrangian L4 and L5 points.Comment: 7 pages, 4 figures, 1 table, accepted to Ap
Coronal Fe XIV Emission During the Whole Heliosphere Interval Campaign
Solar Cycle 24 is having a historically long and weak start. Observations of
the Fe XIV corona from the Sacramento Peak site of the National Solar
Observatory show an abnormal pattern of emission compared to observations of
Cycles 21, 22, and 23 from the same instrument. The previous three cycles have
shown a strong, rapid "Rush to the Poles" (previously observed in polar crown
prominences and earlier coronal observations) in the parameter N(t,l,dt)
(average number of Fe XIV emission features per day over dt days at time t and
latitude l). Cycle 24 displays a weak, intermittent, and slow "Rush" that is
apparent only in the northern hemisphere. If the northern Rush persists at its
current rate, evidence from the Rushes in previous cycles indicates that solar
maximum will occur in early 2013 or late 2012, at least in the northern
hemisphere. At lower latitudes, solar maximum previously occurred when the time
maximum of N(t,l,365) reached approximately 20{\deg} latitude. Currently, this
parameter is at or below 30{\deg}and decreasing in latitude. Unfortunately, it
is difficult at this time to calculate the rate of decrease in N(t,l,365).
However, the southern hemisphere could reach 20{\deg} in 2011. Nonetheless,
considering the levels of activity so far, there is a possibility that the
maximum could be indiscernibleComment: 8 pages, 4 figures; Solar Physics Online First, 2011
http://www.springerlink.com/content/b5kl4040k0626647
Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU
In a case study (June 6-7, 2008) we report on how the internal structure of a
coronal mass ejection (CME) at 1 AU can be anticipated from remote observations
of white-light images of the heliosphere. Favorable circumstances are the
absence of fast equatorial solar wind streams and a low CME velocity which
allow us to relate the imaging and in-situ data in a straightforward way. The
STEREO-B spacecraft encountered typical signatures of a magnetic flux rope
inside an interplanetary CME (ICME) whose axis was inclined at 45 degree to the
solar equatorial plane. Various CME direction-finding techniques yield
consistent results to within 15 degree. Further, remote images from STEREO-A
show that (1) the CME is unambiguously connected to the ICME and can be tracked
all the way to 1 AU, (2) the particular arc-like morphology of the CME points
to an inclined axis, and (3) the three-part structure of the CME may be
plausibly related to the in situ data. This is a first step in predicting both
the direction of travel and the internal structure of CMEs from complete remote
observations between the Sun and 1 AU, which is one of the main requirements
for forecasting the geo-effectiveness of CMEs.Comment: The Astropyhsical Journal Letters (accepted); 4 figure
Recommended from our members
Near-earth cosmic ray decreases associated with remote coronal mass ejections
Galactic cosmic ray (GCR) flux is modulated by both particle drift patterns and solar wind structures on a range of timescales. Over solar cycles, GCR flux varies as a function of the total open solar magnetic flux and the latitudinal extent of the heliospheric current sheet. Over hours, drops of a few percent in near-Earth GCR flux (Forbush decreases, FDs) are well known to be associated with the near-Earth passage of solar wind structures resulting from corotating interaction regions (CIRs) and transient coronal mass ejections (CMEs). We report on four FDs seen at ground-based neutron monitors which cannot be immediately associated with significant structures in the local solar wind. Similarly, there are significant near-Earth structures which do not produce any corresponding GCR variation. Three of the FDs are during the STEREO era, enabling in situ and remote observations from three well-separated heliospheric locations. Extremely large CMEs passed the STEREO-A spacecraft, which was behind the West limb of the Sun, approximately 2–3 days before each near- Earth FD. Solar wind simulations suggest that the CMEs combined with pre-existing CIRs, enhancing the pre-existing barriers to GCR propagation. Thus these observations provide strong evidence for the modulation of GCR flux by remote solar wind structures
Automatic detection of limb prominences in 304 A EUV images
A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a
classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community
On the validity of nonlinear Alfvén resonance in space plasmas
Aims. In the approximation of linear dissipative magnetohydrodynamics (MHD), it can be shown that driven MHD waves in magnetic plasmas with high Reynolds number exhibit a near resonant behaviour if the frequency of the wave becomes equal to the local Alfvén (or slow) frequency of a magnetic surface. This behaviour is confined to a thin region, known as the dissipative layer, which embraces the resonant magnetic surface. Although driven MHD waves have small dimensionless amplitude far away from the resonant surface, this near-resonant behaviour in the dissipative layer may cause a breakdown of linear theory. Our aim is to study the nonlinear effects in Alfvén dissipative layer
Methods. In the present paper, the method of simplified matched asymptotic expansions developed for nonlinear slow resonant waves is used to describe nonlinear effects inside the Alfvén dissipative layer.
Results. The nonlinear corrections to resonant waves in the Alfvén dissipative layer are derived, and it is proved that at the Alfvén resonance (with isotropic/anisotropic dissipation) wave dynamics can be described by the linear theory with great accuracy
Probing the Role of Magnetic-Field Variations in NOAA AR 8038 in Producing Solar Flare and CME on 12 May 1997
We carried out a multi-wavelength study of a CME and a medium-size 1B/C1.3
flare occurring on 12 May 1997. We present the investigation of magnetic-field
variations in the NOAA Active Region 8038 which was observed on the Sun during
7--16 May 1997. Analyses of H{\alpha} filtergrams and MDI/SOHO magnetograms
revealed continual but discrete surge activity, and emergence and cancellation
of flux in this active region. The movie of these magnetograms revealed two
important results that the major opposite polarities of pre-existing region as
well as in the emerging flux region (EFR) were approaching towards each other
and moving magnetic features (MMF) were ejecting out from the major north
polarity at a quasi-periodicity of about ten hrs during 10--13 May 1997. These
activities were probably caused by the magnetic reconnection in the lower
atmosphere driven by photospheric convergence motions, which were evident in
magnetograms. The magnetic field variations such as flux, gradient, and sunspot
rotation revealed that free energy was slowly being stored in the corona. The
slow low-layer magnetic reconnection may be responsible for this storage and
the formation of a sigmoidal core field or a flux rope leading to the eventual
eruption. The occurrence of EUV brightenings in the sigmoidal core field prior
to the rise of a flux rope suggests that the eruption was triggered by the
inner tether-cutting reconnection, but not the external breakout reconnection.
An impulsive acceleration revealed from fast separation of the H{\alpha}
ribbons of the first 150 seconds suggests the CME accelerated in the inner
corona, which is consistent with the temporal profile of the reconnection
electric field. In conclusion, we propose a qualitative model in view of
framework of a solar eruption involving, mass ejections, filament eruption,
CME, and subsequent flare.Comment: 8 figures, accepted for publication in Solar Physic
Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing
Intermittent magnetohydrodynamical turbulence is most likely at work in the
magnetized solar atmosphere. As a result, an array of scaling and multi-scaling
image-processing techniques can be used to measure the expected
self-organization of solar magnetic fields. While these techniques advance our
understanding of the physical system at work, it is unclear whether they can be
used to predict solar eruptions, thus obtaining a practical significance for
space weather. We address part of this problem by focusing on solar active
regions and by investigating the usefulness of scaling and multi-scaling
image-processing techniques in solar flare prediction. Since solar flares
exhibit spatial and temporal intermittency, we suggest that they are the
products of instabilities subject to a critical threshold in a turbulent
magnetic configuration. The identification of this threshold in scaling and
multi-scaling spectra would then contribute meaningfully to the prediction of
solar flares. We find that the fractal dimension of solar magnetic fields and
their multi-fractal spectrum of generalized correlation dimensions do not have
significant predictive ability. The respective multi-fractal structure
functions and their inertial-range scaling exponents, however, probably provide
some statistical distinguishing features between flaring and non-flaring active
regions. More importantly, the temporal evolution of the above scaling
exponents in flaring active regions probably shows a distinct behavior starting
a few hours prior to a flare and therefore this temporal behavior may be
practically useful in flare prediction. The results of this study need to be
validated by more comprehensive works over a large number of solar active
regions.Comment: 26 pages, 7 figure
Recommended from our members
Conservation of open solar magnetic flux and the floor in the heliospheric magnetic field
The near-Earth heliospheric magnetic field intensity, |B|, exhibits a strong solar cycle variation, but returns to the same ``floor'' value each solar minimum. The current minimum, however, has seen |B| drop below previous minima, bringing in to question the existence of a floor, or at the very least requiring a re-assessment of its value. In this study we assume heliospheric flux consists of a constant open flux component and a time-varying contribution from CMEs. In this scenario, the true floor is |B| with zero CME contribution. Using observed CME rates over the solar cycle, we estimate the ``no-CME'' |B| floor at ~4.0 +/- 0.3 nT, lower than previous floor estimates and below |B| observed this solar minimum. We speculate that the drop in |B| observed this minimum may be due to a persistently lower CME rate than the previous minimum, though there are large uncertainties in the supporting observational data
Recommended from our members
Differences between the CME fronts tracked by an expert, an automated algorithm, and the Solar Stormwatch project
Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterizing the propagation of CMEs through the inner heliosphere. Three such catalogues are the Rutherford Appleton Laboratory (RAL)-HI event list, the Solar Stormwatch CME catalogue, and, presented here, the J-tracker catalogue. Each catalogue uses a different method to characterize the location of CME fronts in the HI images: manual identification by an expert, the statistical reduction of the manual identifications of many citizen scientists, and an automated algorithm. We provide a quantitative comparison of the differences between these catalogues and techniques, using 51 CMEs common to each catalogue. The time-elongation profiles of these CME fronts are compared, as are the estimates of the CME kinematics derived from application of three widely used single-spacecraft-fitting techniques. The J-tracker and RAL-HI profiles are most similar, while the Solar Stormwatch profiles display a small systematic offset. Evidence is presented that these differences arise because the RAL-HI and J-tracker profiles follow the sunward edge of CME density enhancements, while Solar Stormwatch profiles track closer to the antisunward (leading) edge. We demonstrate that the method used to produce the time-elongation profile typically introduces more variability into the kinematic estimates than differences between the various single-spacecraft-fitting techniques. This has implications for the repeatability and robustness of these types of analyses, arguably especially so in the context of space weather forecasting, where it could make the results strongly dependent on the methods used by the forecaster
- …
