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ABSTRACT

Aims. In the approximation of linear dissipative magnetohydrodynamics (MHD), it can be shown that driven MHD waves in magnetic
plasmas with high Reynolds number exhibit a near resonant behaviour if the frequency of the wave becomes equal to the local Alfvén
(or slow) frequency of a magnetic surface. This behaviour is confined to a thin region, known as the dissipative layer, which embraces
the resonant magnetic surface. Although driven MHD waves have small dimensionless amplitude far away from the resonant surface,
this near-resonant behaviour in the dissipative layer may cause a breakdown of linear theory. Our aim is to study the nonlinear effects
in Alfvén dissipative layer
Methods. In the present paper, the method of simplified matched asymptotic expansions developed for nonlinear slow resonant waves
is used to describe nonlinear effects inside the Alfvén dissipative layer.
Results. The nonlinear corrections to resonant waves in the Alfvén dissipative layer are derived, and it is proved that at the Alfvén
resonance (with isotropic/anisotropic dissipation) wave dynamics can be described by the linear theory with great accuracy.

Key words. magnetohydrodynamics (MHD) – methods: analytical – Sun: atmosphere – Sun: oscillations

1. Introduction

Magnetic fields are ubiquitous in solar and space plasmas. For
regions where plasma-beta (the ratio of the kinetic and magnetic
pressures) is less than one, magnetism controls the dynamics,
topology and thermal state of the plasma. The magnetic field in
the solar atmosphere is not dispersed, but it tends to accumulate
in thinner or thicker entities often approximated as magnetic flux
tubes. These magnetic flux tubes serve as an ideal medium for
guided wave propagation.

One particular aspect of the solar physics that has attracted
much attention since the 1940s is the very high temperature of
the solar corona compared with the much cooler lower regions
of the solar atmosphere requesting the existence of some mech-
anism(s) that keeps the solar corona hot against the radiative
cooling. One of the possible theories proposed is the transfer
of omnipresent waves’ energy into thermal energy by resonant
absorption or resonant coupling of waves (see e.g. Poedts et al.
1990; Sakurai et al. 1991; Goossens et al. 1995).

Waves which were initially observed sporadically mainly
in radio wavelengths (see e.g., Kai & Takayanagi 1973;
Aschwanden et al. 1992) are now observed in abundance in
all wavelengths, especially in (extreme) ultraviolet (see e.g.,
DeForest & Gurman 1998; Aschwanden et al. 1999; Nakariakov
et al. 1999; Robbrecht et al. 2001; King et al. 2003; Erdélyi &
Taroyan 2008; Mariska et al. 2008). Since the plasma is non-
ideal, waves can lose their energy through transport processes,
however, the time over which the waves dissipate their energy
is far too long. In order to have an effective and localized en-
ergy conversion, the plasma must exhibit transversal inhomo-
geneities relative to the direction of the ambient magnetic field.
It was recognised a long time ago that solar and space plasmas
are inhomogeneous, with physical properties varying over length
scales much smaller than the scales determined by the grav-
itational stratification. Homogenous plasmas have a spectrum
of linear eigenmodes which can be divided into slow, fast and
Alfvén subspectra. The slow and fast subspectra have discrete

eigenmodes whereas the Alfvén subspectrum is infinitely de-
generated. When an inhomogeneity is introduced the three sub-
spectra are changed. The infinite degeneracy of the Alfvén point
spectrum is lifted and replaced by the Alfvén continuum along
with the possibility of discrete Alfvén modes occurring, the ac-
cumulation point of the slow magnetoacoustic eigenvalues is
spread out into the slow continuum and a number of discrete
slow modes may occur, and the fast magnetoacoustic point spec-
trum accumulates at infinity (see e.g., Goedbloed 1975, 1984).

According to the accepted wave theories, effective energy
transfer between an energy carrying wave and the plasma oc-
curs if the frequency of the wave matches one of the frequencies
in the slow or Alfvén continua, i.e. at the slow or Alfvén reso-
nances. The Alfvén resonance has been more frequently associ-
ated with heating of coronal structures given the low-β regime of
the solar corona. Nevertheless, slow resonance cannot be ruled
out as an additional source of energy transfer. From a mathemat-
ical point of view, a resonance is equivalent to regular singular
points in the equations describing the dynamics of waves, but
these singularities can be removed by, e.g., dissipation. Recently
resonant absorption has acquired a new applicability when the
observed damping of waves and oscillations in coronal loops
has been attributed to resonant absorption. Hence, resonant ab-
sorption has become a fundamental constituent block of one of
the newest branches of solar physics, called coronal seismology
(see e.g., Nakariakov et al. 1999; Ruderman & Roberts 2002;
Goossens et al. 2002; Arregui et al. 2007; Ballai et al. 2008;
Goossens et al. 2008; Terradas et al. 2008) when applied to
corona and solar magneto-seismology when applied to the en-
tire coupled solar atmosphere (see e.g., Erdélyi et al. 2007; Verth
2007; Verth et al. 2007).

Given the complexity of the mathematical approach, most
theories describing resonant waves are limited to the linear
regime. Perturbations, in these theories, are considered to be
just small deviations from an equilibrium despite the highly non-
linear character of MHD equations describing the dynamics of
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waves and the complicated interaction between waves and plas-
mas. Initial numerical investigations of resonant waves in a non-
linear limit (see e.g., Ofman & Davila 1995) unveiled that the
account of nonlinearity introduces new physical effects which
cannot be described in the linear framework.

The first attempts to describe the nonlinear resonant waves
analytically appeared after the papers by Ruderman et al.
(1997a,b) which were followed by further analysis by, e.g.,
Ballai et al. (1998); Ballai & Erdélyi (1999); Ruderman (2000);
Clack & Ballai (2008); however, all these papers focused on the
slow resonant waves only. These studies revealed that nonlinear-
ity does affect the absorption of waves. In addition, the absorp-
tion of wave momentum generates a mean shear flow which can
influence the stability of resonant systems.

The present paper is the first analytical study on the nonlin-
ear resonant Alfvén wave, where we obtain governing equations
using techniques made familiar from previous studies on nonlin-
ear slow resonant MHD waves. Before embarking on the actual
derivation, let us carry out a qualitative discussion. First of all we
should point out that in plasmas with high Reynolds numbers (as
in the solar corona) efficient dissipation only operates in a thin
layer embracing the resonant surface. This layer is called the dis-
sipation layer. This restriction on the effect of dissipation makes
the problem more tractable from a mathematical point of view, as
outside the dissipative layer the dynamics of waves is described
by the ideal MHD. Dissipation is a key ingredient of the problem
of resonance. As it was mentioned earlier dissipation removes
singularities in mathematical solutions. From a physical point
of view dissipation is important as it is the mechanism which
relaxes the accumulation of energy at the resonant surface and
eventually contributes to the global process of heating.

It is important to stress that the choice of dissipation has
to be related to the very physics which is described as differ-
ent waves are sensitive to different dissipative mechanisms. Due
to the dominant role of the magnetic field in the solar corona,
transport processes are highly anisotropic. Possible dissipation
mechanisms acting in coronal structures can be described within
the framework of Braginskii’s theory (Braginskii 1965) as it
was shown in applications by, e.g. Erdélyi & Goossens (1995);
Ofman & Davila (1995); Mocanu et al. (2008). Alfvén waves
are incompressible and transversal (in polarization), therefore,
it is sensible to adopt shear viscosity and magnetic resistivity.
Despite both transport processes being described by rather small
coefficients, the net effect of dissipation can be increased consid-
erably when the dissipative coefficients are multiplied by large
transversal gradients.

The paper is organized as follows. In the next section we
introduce the fundamental equations and discuss the main as-
sumptions. In Sect. 3, we derive the governing equation for wave
dynamics inside the Alfvén dissipative layer. Section 4 is de-
voted to calculating the nonlinear corrections at Alfvén reso-
nance. Finally, in Sect. 5 we summarise and draw our conclu-
sions, pointing out a few applications and further studies to be
carried out in the future.

2. Fundamental equations and assumptions

For describing mathematically the nonlinear resonant Alfvén
waves we use the visco-resistive MHD equations. In spite of
the presence of dissipation we use the adiabatic equation as
an approximation of the energy equation. Numerical studies by
Poedts et al. (1994) in linear MHD have shown that dissipation
due to viscosity and finite electrical conductivity in the energy

equation does not alter significantly the behaviour of resonant
MHD waves in the driven problem.

When the product of the ion (electron) gyrofrequency, ωi(e),
and the ion (electron) collision time, τi(e), is much greater than
one (as in the solar corona) the viscosity and finite electrical
conductivity become anisotropic and viscosity is given by the
Braginskii viscosity tensor (see Appendix A). The components
of the viscosity tensor that remove the Alfvén singularity are the
shear components. The parallel and perpendicular components
of anisotropic finite electrical conductivity only differ by a fac-
tor of 2, therefore, we will consider only one of them without
loss of generality.

The dynamics of waves in our model is described by the
visco-resistive MHD equations

∂ρ̄

∂t
+ ∇ · (ρ̄u) = 0, (1)

∂u

∂t
+ (u · ∇)u = −

1

ρ̄
∇P +

1

µ0ρ̄
(B · ∇)B +

1

ρ
∇ · S, (2)

∂B

∂t
= ∇ × (u × B) + λ∇2

B, (3)

∂

∂t

(
p

ρ
γ

)
+ u · ∇

(
p

ρ
γ

)
= 0, (4)

P = p̄ +
B

2

2µ0

, ∇ · B = 0. (5)

In Eqs. (1)−(5) u and B are the velocity and magnetic induc-

tion vectors, p̄ the plasma pressure, ρ̄ the density, λ the coeffi-
cient of magnetic diffusivity, γ the adiabatic exponent, and µ0

the magnetic permeability of free space. In addition, ∇ · S is
the Braginskii viscosity (see Appendix A for full details). Note
that even though anisotropy has been considered the Hall term
has been neglected. We neglect the Hall term from the induction
equation, which can be of the order of diffusion term in the so-
lar corona, because the largest Hall terms in the perpendicular
direction relative to the ambient magnetic field identically can-
cel. The components of the Hall term in the normal and parallel
directions relative to the ambient magnetic field have no effect
on the dynamics of Alfvén waves in dissipative layers, hence
these too are neglected. For full details on the Hall term and the
reasoning behind neglecting it, we refer to Appendix B.

We adopt Cartesian coordinates x, y, z and limit our analysis
to a static background equilibrium (u0 = 0). We assume that all
equilibrium quantities depend on x only. The equilibrium mag-
netic field, B0, is unidirectional and lies in the yz-plane. The
equilibrium quantities must satisfy the condition of total pres-
sure balance,

p0 +
B2

0

2µ0

= const. (6)

For simplicity we assume that the perturbations of all quan-
tities are independent of y (∂/∂y = 0). We note that since
the magnetic field is not aligned with the z-axis, Alfvén waves
still exist. In linear theory of driven waves all perturbed quan-
tities oscillate with the same frequency, ω, which means that
they can be Fourier-analysed and taken to be proportional to
exp(i[kz − ωt]). Solutions are sought in the form of propagating
waves. All perturbations in these solutions depend on the combi-
nation θ = z−Vt, rather than z and t separately, with V = ω/k. In
order to match linear theory as closely as possible we apply the
same procedure as above. In the context of resonant absorption
the phase velocity, V , must match the projection of the Alfvén
velocity, vA, onto the z-axis when x = xA where xA is the reso-
nant position. To define the resonant position mathematically it
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is convenient to introduce the angle, α, between the z-axis and
the direction of the equilibrium magnetic field, so that the com-
ponents of the equilibrium magnetic field are

B0y = B0 sinα, B0z = B0 cosα. (7)

The definition of the resonant position can now be written math-
ematically as

V = vA (xA) cosα, (8)

where vA is the Alfvén speed defined as

vA =
B0√
µ0ρ0

· (9)

In addition we introduce the sound and cusp speeds as

cS =

(
γp0

ρ0

)1/2

, cT =

⎛⎜⎜⎜⎜⎝
c2

S
v2

A

c2
S
+ v2

A

⎞⎟⎟⎟⎟⎠
1/2

· (10)

In what follows we can take xA = 0 without loss of generality.
The perturbations of the physical quantities are defined by

ρ̄ = ρ0 + ρ, p̄ = p0 + p, B = B0 + b,

P = p +
B0 · b
µ0

+
b

2

2µ0

, (11)

where P is the perturbation of total pressure.
The dominant dynamics of resonant Alfvén waves, in lin-

ear MHD, resides in the components of the perturbed magnetic
field and velocity that are perpendicular to the equilibrium mag-
netic field and to the x-direction. This dominant behaviour is cre-
ated by an x−1 singularity in the spatial solution of these quan-
tities at the Alfvén resonance (Sakurai et al. 1991; Goossens &
Ruderman 1995); these variables are known as large variables.
The x-component of velocity, the components of magnetic field
normal and parallel to the equilibrium magnetic field, plasma
pressure and density are also singular, however, their singularity
is proportional to ln |x|. In addition, the quantities P and the com-
ponents of u and b that are parallel to the equilibrium magnetic
field are regular; all these variables are called small variables.

To make the mathematical analysis more concise and the
physics more transparent we define the components of velocity
and magnetic field that are in the yz-plane and are either parallel
or perpendicular to the equilibrium magnetic field:
(
v‖
b‖

)
=

(
v w

by bz

) (
sinα
cosα

)
,

(
v⊥
b⊥

)
=

(
v − w

by − bz

) (
cosα
sinα

)
, (12)

where v, w, by and bz are the y- and z-components of the velocity
and perturbation of magnetic field, respectively.

Let us introduce the characteristic scale of inhomogeneity,
linh. The classical viscous Reynolds number, Re, and the mag-
netic Reynolds number, Rm, are defined as

Re =
ρ̃0Vlinh

η
, Rm =

Vlinh

λ̄
, (13)

where ρ̃0 is a characteristic value of ρ0, and η = η1 is the shear
viscosity coefficient (see Appendix A). These two numbers de-
termine the importance of viscosity and finite electrical conduc-
tivity. We introduce the total Reynolds number as

1

R
=

1

Re

+
1

Rm

· (14)

The aim of this paper is to study the nonlinear behaviour of
driven Alfvén resonant waves in the dissipative layer. We are not
interested in MHD waves that have large amplitude everywhere
and require a nonlinear description in the whole space. We fo-
cus on waves that have small dimensionless amplitude ǫ ≪ 1 far
away from the ideal Alfvén resonant point x = 0.

In nonlinear theory, when studying resonant behaviour in the
dissipative layer we must scale the dissipative coefficients (see
e.g., Ruderman et al. 1997b; Ballai et al. 1998; Clack & Ballai
2008). The general scaling to be applied is

η = R−1η, λ = R−1λ. (15)

Linear theory predicts that the characteristic thickness of the dis-
sipative layer, ldiss, is of the order of linhR−1/3 and we assume
that this is true in the nonlinear regime, too. Hence, we must in-
troduce a stretching transversal coordinate, ξ, in the dissipative
layer defined as

ξ = R1/3x. (16)

We can rewrite Eqs. (1)−(5) in the scalar form as

V
∂ρ

∂θ
−
∂(ρ0u)

∂x
− ρ0

∂w

∂θ
=
∂(ρu)

∂x
+
∂(ρw)

∂θ
, (17)

ρ0V
∂u

∂θ
− ∂P
∂x
+

B0 cosα

µ0

∂bx

∂θ
= ρ̄

(
u
∂u

∂x
+ w
∂w

∂θ

)

−ρV ∂u
∂θ
− bx

µ0

∂bx

∂x
− bz

µ0

∂bx

∂θ
− η∂

2u

∂x2
, (18)

∂

∂θ

(
ρ0Vv⊥ + P sinα +

B0 cosα

µ0

b⊥

)
= ρ̄

(
u
∂v⊥

∂x
+ w
∂v⊥

∂θ

)

−ρV ∂v⊥
∂θ
− bx

µ0

∂b⊥

∂x
− bz

µ0

∂b⊥

∂θ
− η∂

2v⊥

∂x2
, (19)

∂

∂θ

(
ρ0Vv‖ − P cosα +

B0 cosα

µ0

b‖

)
= ρ̄

(
u
∂v‖

∂x
+ w
∂v‖

∂θ

)

−bx

µ0

dB0

dx
− ρV

∂v‖

∂θ
− bx

µ0

∂b‖

∂x
− bz

µ0

∂b‖

∂θ
− 4η
∂2v‖

∂x2
, (20)

Vbx + B0u cosα = wbx − ubz + λ

(
∂bx

∂θ
− ∂bz

∂x

)
, (21)

∂

∂θ
(Vb⊥ + B0v⊥ cosα) =

∂(ub⊥)

∂x
+
∂(wb⊥)

∂θ

− bx

∂v⊥

∂x
− bz

∂v⊥

∂θ
− λ∇2b⊥, (22)

∂

∂θ

(
Vb‖ + B0v‖ cosα

)
−
∂(B0u)

∂x
− B0

∂w

∂θ

=
∂(ub‖)

∂x
+
∂(wb‖)

∂θ
− bx

∂v‖

∂x
− bz

∂v‖

∂θ
− λ∇2b‖, (23)

V

(
∂p

∂θ
− c2

S

∂ρ

∂θ

)
− u

(
dp0

dx
− c2

S

dρ0

dx

)

=
1

ρ0

{
V

(
γp
∂ρ

∂θ
− ρ
∂p

∂θ

)
− w

[
γp
∂ρ

∂θ
− p
∂p

∂θ

]

+u

[
ρ

dp0

dx
− γp

dρ0

dx
+ ρ
∂p

∂x
− γp

∂ρ

∂x

]}
(24)

P = p +
1

2µ0

(
b2

x + b2
⊥ + b2

‖ + 2B0b‖
)
, (25)

∂bx

∂x
+
∂bz

∂θ
= 0. (26)

In the above equations ∇ = (∂/∂x, 0, ∂/∂θ) and w = v‖ cosα −
v⊥ sinα.
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Equations (17)−(26) will be used in the following sections
to derive the governing equation for the resonant Alfvén waves
inside the dissipative layer and to find the nonlinear corrections.

3. The governing equation in the dissipative layer

In order to derive the governing equation for wave motions in
the Alfvén dissipative layer we employ the method of matched
asymptotic expansions (Nayfeh 1981; Bender & Országh 1991).
This method requires to find the so-called outer and inner ex-
pansions and then match them in the overlap regions. This
nomenclature is ideal for our situation. The outer expansion cor-
responds to the solution outside the dissipative layer and the
inner expansion corresponds to the solution inside the dissipative
layer. A simplified version of the method of matched asymptotic
expansions, developed by Ballai et al. (1998), is adopted here.

The typical largest quadratic nonlinear term in the system of
MHD equations is of the form g∂g/∂z while the typical dissipa-
tive term is of the form η∂2g/∂z2, where g is any “large” variable.
Linear theory predicts that “large” variables have an ideal singu-
larity x−1 in the vicinity of x = 0. This implies that the “large”
variables have dimensionless amplitudes in the dissipative layer
of the order of ǫR1/3. It is now straightforward to estimate the
ratio of a typical quadratic nonlinear and dissipative term,

φq =
g∂g/∂z

η∂2g/∂z2
= O(ǫR2/3), (27)

where the quantity φq can be considered as the quadratic nonlin-

earity parameter. If the condition ǫR2/3 ≪ 1 is satisfied, linear
theory is applicable. On the other hand, if ǫR2/3 >∼ 1 then nonlin-
earity has to be taken into account when studying resonant waves
in dissipative layers. Using the same scalings, Ruderman et al.
(1997b) showed that nonlinearity has to be considered when-
ever slow resonant waves are studied in the solar photosphere.
For a typical dimensionless amplitude of ǫ ∼ 10−2 linear the-
ory can be applied if the total Reynolds number is less than 103.
This value is much less than the resistive and shear viscosity
Reynolds number (1010−1012). This conclusion implies that in
the solar atmosphere resonant absorption should be a nonlin-
ear phenomenon. In order to describe the role of dissipation and
nonlinearity equally we assume that φq ∼ 1.

Far away from the dissipative layer the amplitudes of pertur-
bations are small, so we use linear ideal MHD equations in order
to describe the wave motion. The full set of nonlinear dissipative
MHD equations are used for describing wave motion inside the
dissipative layer where the amplitudes can be large. We, there-
fore, look for solutions in the form of asymptotic expansions.
The equilibrium quantities change only slightly across the dis-
sipative layer so it is possible to approximate them by the first
non-vanishing term in their Taylor series expansion with respect
to x. Similar to linear theory, we assume that the expansions of
equilibrium quantities are valid in a region embracing the ideal
resonant position, which is assumed to be much wider than the
dissipative layer. This implies that there are two overlap regions,
one to the left and one to the right of the dissipative layer, where
both the outer (the solution to the linear ideal MHD equations)
and inner (the solution to the nonlinear dissipative MHD equa-
tions) solutions are valid. Hence, both solutions must coincide in
the overlap regions which provides the matching conditions.

Before deriving the nonlinear governing equation we ought
to make a note. In linear theory, perturbations of physical quan-
tities are harmonic functions of θ and their mean values over a
period are zero. In nonlinear theory, however, the perturbations

of variables can have non-zero mean values as a result of non-
linear interaction of different harmonics. Due to the absorption
of wave momentum, a mean shear flow is generated outside the
dissipative layer (Ofman & Davila 1995). This result is true for
our analysis also, however, due to the length of this study we
prefer to deal with this problem in a forthcoming paper.

We suppose that nonlinearity and dissipation are of the same
order so we have ǫR2/3 = O(1), i.e. R ∼ ǫ−3/2. We can, therefore,
substitute ǫ−3/2 for R in Eq. (15) to rescale viscosity and finite
electrical resistivity as

η = ǫ3/2η, λ = ǫ3/2λ. (28)

We do not rewrite the MHD equations as they are easily obtained
from Eqs. (17)−(26) by substitution of Eq. (28).

The first step in our description is the derivation of govern-
ing equations outside the dissipative layer where the dynamics
is described by ideal (η = λ = 0) and linear MHD. The linear
form of Eqs. (17)−(26) can be obtained by assuming a regular
expansion of variables of the form

f = ǫ f (1) + ǫ3/2 f (2) . . . , (29)

and collect only terms proportional to the small parameter ǫ.
This leads to a system of linear equations for the variables with
superscript “1”. All variables can be eliminated in favour of u(1)

and P(1), leading to the system

V
∂P(1)

∂θ
= F
∂u(1)

∂x
, V
∂P(1)

∂x
= ρ0A

∂u(1)

∂θ
, (30)

where

F =
ρ0AC

V4 − V2
(
v2

A
+ c2

S

)
+ v2

A
c2

S
cos2 α

, (31)

A = V2 − v2A cos2 α,

C =
(
v2A + c2

S

) (
V2 − c2

T cos2 α
)
. (32)

The quantities A and C vanish at the Alfvén and slow resonant
positions, respectively. As a result these two positions are regular
singular points for the system (30). The remaining variables can
be expressed in terms of u(1) and P(1) as,

v
(1)
⊥ = −

V sinα

ρ0A
P(1), v

(1)

‖ =
Vc2

S
cosα

ρ0C
P(1), (33)

b(1)
x = −

B0 cosα

V
u(1), b

(1)
⊥ =

B0 cosα sinα

ρ0A
P(1), (34)

∂b
(1)

‖

∂θ
=

B0

(
V2 − c2

S
cos2 α

)

ρ0C

∂P(1)

∂θ
+

u(1)

V

dB0

dx
, (35)

∂p(1)

∂θ
=

V2c2
S

C

∂P(1)

∂θ
− u(1)B0

µ0V

dB0

dx
, (36)

∂ρ(1)

∂θ
=

V2

C

∂P(1)

∂θ
+

u(1)

V

dρ0

dx
· (37)

Since Eq. (30) has regular singular points, the solutions can be
obtained in terms of Fröbenius series with respect to x (for de-
tails see, e.g., Ruderman et al. 1997b; Ballai et al. 1998) of
the form

P(1) = P
(1)

1
(θ) + P

(1)

2
(θ)x ln |x| + P

(1)

3
(θ) + . . . , (38)

u(1) = u
(1)

1
(θ) ln |x| + u

(1)

2
(θ) + u

(1)

3
(θ)x ln |x| + . . . (39)
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The coefficient functions depending on θ in the above expansions
are, generally, different for x < 0 and x > 0. The particular
form of these series solutions indicates that the perturbation of
the total pressure is regular at the ideal resonant position. From

Eqs. (33)−(37), we see that the quantity v
(1)

‖ is also regular, while

all other quantities are singular. The quantities u(1), b
(1)
x , b

(1)

‖ , p(1)

and ρ(1) behave as ln |x|, while v
(1)
⊥ and b

(1)
⊥ behave as x−1, so they

are the most singular.
As the characteristic scale of dissipation is of the order of

linhR−1/3 and we have assumed that R ∼ ǫ3/2 we obtain that the
thickness of the dissipative layer is linhR−1/3 = O(ǫ1/2linh), im-
plying the introduction of a new stretched variable to replace the
transversal coordinate in the dissipative layer, which is defined
as ξ = ǫ−1/2 x. Again, for brevity, Eqs. (17)−(26) are not rewrit-
ten as they can be obtained by the substitution of

∂

∂x
= ǫ−1/2 ∂

∂ξ
, (40)

for all derivatives. The equilibrium quantities still depend on x,
not ξ (their expression is valid in a wider region than the charac-
teristic thickness of the dissipative layer). All equilibrium quan-
tities are expanded around the ideal resonant position, x = 0, as

f0 ≈ f0A
+ ǫ1/2ξ

(
d f0

dx

)

A

, (41)

where f0 is any equilibrium quantity and the subscript “A” in-
dicates that the equilibrium quantity is evaluated at the Alfvén
resonant point.

We seek the solution to the set of equations obtained from
Eqs. (17)−(26) by the substitution of x = ǫ1/2ξ into variables in
the form of power series of ǫ. These equations contain powers
of ǫ1/2, so we use this quantity as an expansion parameter. To
derive the form of the inner expansions of different quantities
we have to analyze the outer solutions. First, since v‖ and P are
regular at x = 0 we can write their inner expansions in the form
of their outer expansions Eq. (29). The amplitudes of large vari-
ables in the dissipative layer are of the order of ǫ1/2, so the inner
expansion of the variables v⊥ and b⊥ is

g = ǫ1/2g(1) + ǫg(2) + . . . (42)

The quantities u, bx, b‖, p and ρ behave as ln |x| in the vicinity
of x = 0, which suggests that they have expansions with terms
of the order of ǫ ln ǫ in the dissipative layer. Strictly speaking,
the inner expansions of all variables have to contain terms pro-
portional to ǫ ln ǫ and ǫ3/2 ln ǫ (see e.g., Ruderman et al. 1997b).
In the simplified version of matched asymptotic expansions we
utilize the fact that | ln ǫ| ≪ ǫ−κ for any positive κ and ǫ → +0,
and consider ln ǫ as a quantity of the order of unity (Ballai et al.
1998). This enables us to write the inner expansions for u, bx, b‖,
p and ρ in the form of Eq. (29).

We now substitute the expansion (29) for P, u, bx, b‖, v‖, p
and ρ and the expansion given by Eq. (42) for v⊥ and b⊥ into
the set of equations obtained from Eqs. (17)−(26) after substitu-
tion of x = ǫ1/2ξ. The first order approximation (terms propor-
tional to ǫ), yields a linear homogeneous system of equations for
the terms with superscript “1”. The important result that follows
from this set of equations is that

P(1) = P(1)(θ), (43)

that is P(1) does not change across the dissipative layer.
This result parallels the result found in linear theory

(Sakurai et al. 1991; Goossens et al. 1995) and nonlinear the-
ories of slow resonance (see e.g., Ruderman et al. 1997b; Ballai
et al. 1998; Clack & Ballai 2008). Subsequently, all remaining

variables can be expressed in terms of u(1), v
(1)
⊥ and P(1) as

v
(1)

‖ =
c2

S

v2
A

cosα

ρ0V
P(1), (44)

b
(1)
⊥ = −

B0V

v2
A

cosα
v

(1)
⊥ , b(1)

x = −
B0 cosα

V
u(1), (45)

∂b
(1)

‖

∂θ
=

B0

(
v2

A
− c2

S

)

ρ0v
4
A

dP(1)

dθ
+

u(1)

V

(
dB0

dx

)
, (46)

∂p(1)

∂θ
=

c2
S

v2
A

dP(1)

dθ
−

u(1)

V

B0

µ0

(
dB0

dx

)
, (47)

∂ρ(1)

∂θ
=

1

v2
A

dP(1)

dθ
+

u(1)

V

(
dρ0

dx

)
· (48)

All equilibrium quantities are calculated at x = 0. In addition, the
relation that connects the normal and perpendicular components
of velocity is

∂u(1)

∂ξ
− sinα

∂v
(1)
⊥
∂θ
= 0. (49)

In the second order approximation we only use the expressions
obtained from Eqs. (19) and (22). Employing Eqs. (43)−(49), we
replace the variables in the second order approximation which
have superscript “1”. The equations obtained in the second
order are

∂P(1)

∂θ
sinα +

B0 cosα

µ0

∂b
(2)
⊥
∂θ
+ Vρ0

∂v
(2)
⊥
∂θ

=
B0V

µ0v
2
A

(
dB0

dx

)
ξ
∂v

(1)
⊥
∂θ
− V

(
dρ0

dx

)
ξ
∂v

(1)
⊥
∂θ
− η
∂2v

(1)
⊥
∂ξ2
, (50)

V
∂b

(2)
⊥
∂θ
+ B0 cosα

∂v
(2)
⊥
∂θ
+ cosα

(
dB0

dx

)
ξ
∂v

(1)
⊥
∂θ

= λ
B0V

v2
A

cosα

∂2v
(1)
⊥
∂ξ2
· (51)

Once the variables with superscript “2” have been eliminated
from the above two equations, the governing equation for reso-
nant Alfvén waves inside the dissipative layer is derived as

△ξ
∂v

(1)
⊥
∂θ
+

V

ρ0

(η + ρ0λ)
∂2v

(1)
⊥
∂ξ2

= −V sinα

ρ0

dP(1)

dθ
, (52)

where

△ = −
⎛⎜⎜⎜⎜⎝

dv2
A

dx

⎞⎟⎟⎟⎟⎠ cos2 α. (53)

It is clear that Eq. (52) does not contain nonlinear terms despite
considering the full MHD system of equations. This result is in
stark contrast with the results obtained for nonlinear slow res-
onance where the governing equation was found to be always
nonlinear (see e.g., Ruderman et al. 1997b; Ballai et al. 1998;
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Clack & Ballai 2008). The governing Eq. (52) suggests that res-
onant Alfvén waves can be described by the linear theory un-
less their amplitudes inside the dissipative layer is of the order
of unity.

As the quadratic nonlinear terms cancel each other out, it
is natural to take into account cubic nonlinearity (the system of
MHD equations contain cubic nonlinear terms), where the non-
linearity parameter is defined as

φc =
g2∂g/∂z

η∂2g/∂x2
≃ ǫ2R. (54)

Despite the higher order nonlinearity the governing equation is
similar to the equation derived for quadratic nonlinearity (52).
These results require finding an explanation to the linear be-
haviour of waves inside the dissipative layer. The following sec-
tion will be devoted to the study of nonlinear corrections in the
Alfvén dissipative layer.

4. Nonlinear corrections in the Alfvén dissipative

layer

Since we have assumed that waves have small dimensionless
amplitude outside the dissipative layer, we will concentrate only
on the solutions inside the dissipative layer.

In our analysis we use the assumptions and equations pre-
sented in Sect. 2, however, we will not impose any relation be-
tween ǫ and R. Equations (15) and (16) will be used to define the
scaled dissipative coefficients and stretching transversal coordi-
nate in the dissipative layer. For simplicity we denote δ = R−1/3.
This means that our scaled dissipative coefficients and stretched
transversal coordinate become

η = δ3η, λ = δ3λ, ξ = δ−1x. (55)

The first step to accomplish our task is to rewrite Eqs. (17)−(26)
by substituting

∂

∂x
= δ−1 ∂

∂ξ
,
∂

∂z
=
∂

∂θ
, and

∂

∂t
= −V

∂

∂θ
· (56)

All equilibrium quantities (which are still dependent on x, not
ξ) will be approximated by the first non-vanishing term of their
Taylor expansion (see, Eq. (41)).

The substitution of Eqs. (41), (55) and (56) will transform
Eqs. (17)−(26) into

ρ0

∂u

∂ξ
+ δu

dρ0

dx
+
∂(ρu)

∂ξ
− δ ∂
∂θ

[
ρ (V − w)

]
= 0, (57)

1

ρ

[
∂P

∂ξ
− bx

µ0

∂bx

∂ξ
− δ
µ0

(B0 cosα + bz)
∂bx

∂θ

]

= δ (V − w)
∂u

∂θ
− u
∂u

∂ξ
+ δ2 η

ρ0

∂2u

∂ξ2
, (58)

1

ρ

[
δ
∂P

∂θ
sinα +

bx

µ0

∂b⊥

∂ξ
+
δ

µ0

(B0 cosα + bz)
∂b⊥

∂θ

]

= −δ (V − w)
∂v⊥

∂θ
+ u
∂v⊥

∂ξ
− δ2 η

ρ0

∂2v⊥

∂ξ2
, (59)

1

ρ

[
δ
∂P

∂θ
cosα − bx

µ0

∂b‖

∂ξ
− δ
µ0

(B0 cosα + bz)
∂b‖

∂θ

−
δ

µ0

dB0

dx
bx

]
= δ (V − w)

∂v‖

∂θ
− u
∂v‖

∂ξ
+ δ2 4η

ρ0

∂2v‖

∂ξ2
, (60)

δ (V − w)
∂bx

∂θ
+ δ (B0 cosα + bz)

∂u

∂θ

+δ2λ

(
∂2

∂ξ2
+ δ2 ∂

2

∂θ2

)
bx = 0, (61)

δ (V − w)
∂b⊥

∂θ
− u
∂b⊥

∂ξ
− b⊥

(
∂u

∂ξ
+ δ
∂v‖

∂θ
cosα

)
+ bx

∂v⊥

∂ξ

+δ
(
B0 + b‖

) ∂v⊥
∂θ

cosα + δ2λ

(
∂2

∂ξ2
+ δ2 ∂

2

∂θ2

)
b⊥ = 0, (62)

δ (V − w)
∂b‖

∂θ
− u

(
∂b‖

∂ξ
+ δ

dB0

dx

)
+ bx

∂v‖

∂ξ
− δb⊥

∂v‖

∂θ

−
(
B0 + b‖

) (∂u
∂ξ
− δ∂v⊥
∂θ

sinα

)
+ δ2λ

(
∂2

∂ξ2
+ δ2 ∂

2

∂θ2

)
b‖ = 0, (63)

[
δ (V − w)

∂

∂θ
− u
∂

∂ξ

] (
p

ργ

)
= 0, (64)

P = p +
B0

µ0

b‖ +
1

2µ0

(
b2

x + b2
⊥ + b2

‖

)
. (65)

The only condition we need to impose when deriving the non-
linear corrections to resonant Alfvén waves in the dissipative
layer is imported from the linear theory which predicts that in
the dissipative layer “large” variables have dimensionless am-
plitude of the order of ǫR1/3 (see Sect. 3). We assume that the
dimensionless amplitudes of the linear approximation of “large”
variables (v⊥ and b⊥) in the dissipative layer are small, so that

ǫ ≪ R−1/3(=δ). (66)

This condition ensures that the oscillation amplitude remains
small inside the dissipative layer. From a naive point of view
the linear theory is applicable as soon as the oscillation ampli-
tude is small. The example of slow resonant waves clearly shows
that this is not the case. The nonlinear effects become important
in the slow dissipative layer as soon as ǫ ∼ R−2/3, i.e. as soon
as the oscillation amplitude in the dissipative layer, which is of
the order of ǫR1/3, is of the order of R−1/3 ≪ 1. For example,
in the corona perturbations with dimensionless amplitudes less
than 10−4 can be considered by this theory. From Eq. (27) we
would expect to see quadratic nonlinearity appear for waves with
dimensionless amplitudes larger than 10−8 and from Eq. (54) we
would expect to see cubic nonlinearity appear for waves with di-
mensionless amplitudes larger than 10−6. If we take ǫ ≈ R−1/3

we find that inside the dissipative layer we have dimensionless
amplitudes of the order of unity. This causes a breakdown in
our theory, and therefore another approach would have to be
adopted. At this time we do not know of an analytical study
which can carry out this task without considering the full non-
linear MHD equations throughout the domain.

We now assume that all perturbations can be written as a
regular asymptotic expansion of the form

f = f 0(x) + ǫ f 1(ξ, θ) + ǫ2 f 2(ξ, θ) + . . . , (67)

where f 0(x) represents the equilibrium value. Substitution of ex-
pansion (67) into the system (57)−(65) leads to a system of equa-
tions which contains the small parameter δ. This observation in-
spires us to look for the solution in the form of expansions with
respect to δ. In order to cast large and small variables in this de-
scription we are going to use the following expansion for small
variables (u, bx, v‖, b‖, ρ, p and P)

g1 = g
(1)

1
+ δg

(2)

1
+ . . . , (68)
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while large variables (v⊥ and b⊥) will be expanded according to

h1 = δ
−1h

(1)

1 + h
(2)

1 + . . . (69)

The bar notation is used here to distinguish between these ex-
pansions and the expansions used in the previous section. From
this point on we drop the bar notation.

Substituting Eqs. (68), (69) into the system (57)−(65), taking
terms proportional to ǫ and then only retaining terms with the
lowest power of δ, results in the set of linear equations

ρ0

∂v
(1)

⊥1

∂θ
sinα − ρ0

∂u
(1)

1

∂ξ
= 0, (70)

∂P
(1)

1

∂ξ
= 0, (71)

ρ0V
∂v

(1)

⊥1

∂θ
+

B0 cosα

µ0

∂b
(1)

⊥1

∂θ
= 0, (72)

∂P
(1)

1

∂θ
cosα − ρ0V

∂v
(1)

‖1

∂θ
−

b
(1)

x1

µ0

(
dB0

dx

)
− B0 cosα

µ0

∂b
(1)

‖1

∂θ
= 0, (73)

V
∂b

(1)

x1

∂θ
+ B0 cosα

∂u
(1)

1

∂θ
= 0, (74)

V
∂b

(1)

⊥1

∂θ
+ B0 cosα

∂v
(1)

⊥1

∂θ
= 0, (75)

B0

∂u
(1)

1

∂ξ
− B0 sinα

∂v
(1)

⊥1

∂θ
= 0, (76)

ρ0V
∂p

(1)

1

∂θ
− ρ0c2

SV
∂ρ

(1)

1

∂θ
+ ρ0u

(1)

1

[
c2

S

(
dρ0

dx

)
−
(
dp0

dx

)]
= 0, (77)

P
(1)

1
− p

(1)

1
− B0

µ0

b
(1)

‖1 = 0. (78)

In these equations all equilibrium quantities are calculated
at x = 0.

Using these equations we can express all dependent variables

in terms of u
(1)

1
, v

(1)

⊥1
and P

(1)

1
,

v
(1)

‖1 =
c2

S

v2
A

cosα

ρ0V
P

(1)

1
, (79)

b
(1)

⊥1
= − B0V

v2
A

cosα
v

(1)

⊥1
, b

(1)

x1
= −B0 cosα

V
u

(1)

1
, (80)

∂b
(1)

‖1

∂θ
=

B0

(
v2

A
− c2

S

)

ρ0v
4
A

dP
(1)

1

dθ
+

u
(1)

1

V

(
dB0

dx

)
, (81)

∂p
(1)

1

∂θ
=

c2
S

v2
A

dP
(1)

1

dθ
−

u
(1)

1

V

B0

µ0

(
dB0

dx

)
, (82)

∂ρ
(1)

1

∂θ
=

1

v2
A

dP
(1)

1

dθ
+

u
(1)

1

V

(
dρ0

dx

)
· (83)

It follows from Eq. (71) that

P
(1)

1
= P

(1)

1
(θ). (84)

Finally, we obtain the relation between u
(1)

1
and v

(1)

⊥1
,

∂u
(1)

1

∂ξ
=
∂v

(1)

⊥1

∂θ
sinα. (85)

Note that Eqs. (79)−(85) are formally identical to Eqs. (43)−(49)
for the linear approximation in Sect. 3. This is not surprising as
both methods are designed to replicate linear theory in the first
order approximation.

4.1. The second and third order nonlinear corrections

Once the first order terms are known we can proceed to derive
the second and third order approximations with respect to ǫ (i.e.
terms from the expansion of Eqs. (57)−(65) that are proportional
to ǫ2 and ǫ3, respectively). First, we write out the second order
approximations and substitute for all first order terms (i.e. terms

of the form f
(1)

1
) using Eqs. (79)−(85). Secondly, we find (by

solving the inhomogeneous system) the expansions of second
order terms (terms with subscript “2”). Thirdly, we derive the
second order relations between all variables, similar to the ones
obtained in the first order approximation.

The equations representing the second order approximation
with respect to ǫ (with variables in the first order substituted) are

ρ0

∂u2

∂ξ
+ δ

[
ξ

(
dρ0

dx

)
∂u2

∂ξ
− V
∂ρ2

∂θ
+ ρ0

(
∂v‖2

∂θ
cosα

−∂v⊥2

∂θ
sinα

)
+

(
dρ0

dx

)
u2

]
=
v

(1)

⊥1

v2
A

dP
(1)

1

dθ
sinα + O(δ), (86)

∂P2

∂ξ
− δ

[
ρ0V
∂u2

∂θ
+

B0 cosα

µ0

∂bx2

∂θ

]
= O(δ), (87)

∂P2

∂θ
sinα + ρ0V

∂v⊥2

∂θ
+

B0 cosα

µ0

∂b⊥2

∂θ
+ δ

{
ξ

[
V

(
dρ0

dx

)
∂v⊥2

∂θ

+
cosα

µ0

(
dB0

dx

)
∂b⊥2

∂θ

]
+ η
∂2v⊥2

∂ξ2

}
= O(δ−1), (88)

∂P2

∂θ
cosα − ρ0V

∂v‖2

∂θ
− bx2

µ

(
dB0

dx

)
− B0 cosα

µ0

∂b‖2

∂θ

−δ
{

4η
∂2v‖2

∂ξ2
+ ξ

[
V

(
dρ0

dx

)
∂v‖2

∂θ
+

cosα

µ0

(
dB0

dx

)
∂b‖2

∂θ

]}

= δ−1

⎡⎢⎢⎢⎢⎢⎣
cosα sinα

V
v

(1)

⊥1

dP
(1)

1

dθ

⎤⎥⎥⎥⎥⎥⎦ + O(1), (89)

V
∂bx2

∂θ
+ B0 cosα

∂u2

∂θ

+δ

[
λ
∂2bx2

∂ξ2
+ ξ cosα

(
dB0

dx

)
∂u2

∂θ

]
= O(1), (90)

V
∂b⊥2

∂θ
+ B0 cosα

∂v⊥2

∂θ

+δ

[
λ
∂2b⊥2

∂ξ2
+ ξ cosα

(
dB0

dx

)
∂v⊥2

∂θ

]
= O(δ−1), (91)

B0

∂u2

∂ξ
+ δ

[(
dB0

dx

)
u2 − B0 sinα

∂v⊥2

∂θ
− V
∂b‖2

∂θ

+ξ

(
dB0

dx

)
∂u2

∂ξ

]
=

B0 sinα

ρ0v
2
A

v
(1)

⊥1

dP
(1)

1

dθ
+O(δ), (92)

ρ0V
∂p2

∂θ
− ρ0c2

SV
∂ρ2

∂θ
+ ρ0u2

[
c2

S

(
dρ0

dx

)
−
(
dp0

dx

)]
= O(δ−1), (93)

P2−p2 −
B0

µ0

b‖2+δ

[
ξ

µ0

(
dB0

dx

)
b‖2

]
=δ−2

[
ρ0

2
v

(1)

⊥1

2
]
+O(δ−1). (94)

It is clear that nonlinear terms appear from this order of approx-
imation and they are expressed in terms of variables obtained in
the first order.

The analysis of the system of Eqs. (86)−(94) reveals that the
expansions with respect to δ has to be written in the form

g2 = δ
−1g

(1)

2
+ g

(2)

2
+ δg

(3)

2
+ . . . , (95)
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for u2, bx2, v⊥2, b⊥2 and P2 and

h2 = δ
−2h

(1)

2
+ δ−1h

(2)

2
+ h

(3)

2
+ . . . , (96)

for v‖2, b‖2, p2 and ρ2.
Here we need to make a note. It follows from Eqs. (95)

and (96) that the ratio of ρ2 to ρ1 is of the order of ǫδ−2, and
the same is true for v‖2, b‖2 and p2. It seems to be inconsistent
with the regular perturbation method where it is assumed that
the next order approximation is always smaller than the pre-
vious one. However, this problem is only apparent. To show
this we need to clarify the exact mathematical meaning of the
statement “in the asymptotic expansion each subsequent term is
much smaller than the previous one”. To do this we introduce
the nine-dimensional vector U =

(
u, v‖, v⊥, bx, b‖, b⊥, P, p, ρ

)
and

consider it as an element of a Banach space. The norm in this
space can be introduced in different ways. One possibility is

||U|| =
∫ L

0

dθ

∫ ∞

−∞
|U| dξ, (97)

where L is the period. The asymptotic expansion in the dissipa-
tive layer, Eq. (68), can be rewritten as U = U0+ǫU1+ǫ

2
U2+. . ..

Then the mathematical formulation of the statement “each sub-
sequent term is much smaller than the previous one” is ||Un+1|| ≪
||Un||, n = 1, 2, . . .. It is straightforward to verify that, in accor-
dance with Eqs. (68), (69), (95) and (96), ||U2|| ≪ ||U1||.

Once the expansions (95) and (96) are substituted into
Eqs. (86)−(94), we can express the variables in this order of
approximation as

v
(1)

‖2 =
cosα

2V
v

(1)

⊥1

2
, b

(1)

‖2 = −
B0

2v2
A

v
(1)

⊥1

2
, (98)

b
(1)

⊥2
= v

(1)

⊥2
= 0, b

(1)

x2
= −B0 cosα

V
u

(1)

2
, (99)

p
(1)

2
= ρ

(1)

2
= 0. (100)

For the total pressure we obtain that

∂P
(1)

2

∂ξ
= 0 =⇒ P

(1)

2
= P

(1)

2
(θ). (101)

In addition, we obtain that the equation which determines u
(1)

2
is

∂u
(1)

2

∂ξ
= −cos2 α

V
v

(1)

⊥1

∂v
(1)

⊥1

∂θ
· (102)

Since the large variables in this order of approximation are v‖2
and b‖2, we can deduce that the linear order of approximation
of resonant Alfvén waves in the dissipative layer excite mag-
netoacoustic modes in the second order of approximation. The
excitation comes from the nonlinear term found in the second
order approximation of the pressure equation, this drives the
parallel components of the velocity and magnetic field pertur-
bations. Since we are focussed on the Alfvén resonance only,
these waves are not resonant. These waves act to cancel the very
small pressure and density perturbations created by the first or-
der approximation.

We now calculate the third order approximation with respect
to ǫ. On analyzing the third order system of equations we de-
duce that the large variables in this order of approximation are

Alfvénic (v
(1)

⊥3
, b

(1)

⊥3
), so we only need the perpendicular compo-

nents of momentum and induction equations given by Eqs. (59)
and (62), respectively.

First, since some of the first order approximation terms con-
tribute to the third order approximation in integral form we must
introduce a new notation

U
(1)

1
=

∫
u

(1)

1
dθ. (103)

The third order approximation of the perpendicular component
of momentum is

∂P3

∂θ
sinα + ρ0V

∂v⊥3

∂θ
+

B0 cosα

µ0

∂b⊥3

∂θ

+δ

[
ξ

(
V

(
dρ0

dx

)
∂v⊥3

∂θ
+

cosα

µ0

(
dB0

dx

)
∂b⊥3

∂θ

)
+ η
∂2v⊥3

∂ξ2

]

= δ−2

⎧⎪⎪⎨⎪⎪⎩
∂v

(1)

⊥1

∂ξ

⎡⎢⎢⎢⎢⎢⎣
u

(1)

1
P

(1)

1

v2
A

+
u

(1)

1
U

(1)

1

V

(
dρ0

dx

)⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭ +O(δ−1), (104)

while the perpendicular component of magnetic induction equa-
tion is

V
∂b⊥3

∂θ
+ B0 cosα

∂v⊥3

∂θ
+ δ

[
λ
∂2b⊥3

∂ξ2

+ξ cosα

(
dB0

dx

)
∂v⊥3

∂θ

]
= O(δ−2). (105)

Note that in obtaining the third order approximations we have
employed all the relations we have for variables in the first and
second order of approximation.

Equations (104) and (105) clearly show that the nonlinear
terms on the right-hand sides do not cancel. This implies that the
expansion of v⊥3 and b⊥3 should be of the form

h3 = δ
−3h

(1)

3
+ δ−2h

(2)

3
+ δ−1h

(3)

3
+ . . . (106)

We should state, for completeness, that if we derive the third
order approximation for all the Eqs. (57)−(65) we obtain the ex-
pansions for u3, bx3, v‖3, b‖3, p3, ρ3 and P3 to be

g3 = δ
−2g

(1)

3
+ δ−1g

(2)

3
+ g

(3)

3
+ . . . (107)

The expansions calculated for all the variables can now be col-
lected together and we can write the expansions for “large” and
“small” variables in the dissipative layer when studying resonant
Alfvén waves. Large variables (v⊥ and b⊥) have the expansion

h =

(
ǫ

δ

)
h

(1)

1
+ ǫ

(
ǫ

δ

)
h

(1)

2
+

(
ǫ

δ

)3

h
(1)

3
+ . . . , (108)

and the expansion of small variables (u, bx, v‖, b‖, p, ρ and P) is
defined as

g = ǫg
(1)

1
+

(
ǫ

δ

)2

g
(1)

2
+ ǫ

(
ǫ

δ

)2

g
(1)

3
+ . . . (109)

Since Eq. (66) is the only condition enforced in the dissipative
layer, we can state that

1 >

(
ǫ

δ

)
>

(
ǫ

δ

)2

>

(
ǫ

δ

)3

> . . . (110)

Therefore, since both Eqs. (108) and (109) contain successive
higher powers of the parameter ǫ/δ we can deduce that, con-
sidering Eq. (110), higher orders of approximation of large and
small variables become increasingly insignificant in comparison
to the linear order of approximation, so resonant Alfvén waves in
the dissipative layer can be described accurately by linear theory
if condition (66) is satisfied.
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5. Conclusions

In the present paper we have investigated the nonlinear be-
haviour of resonant Alfvén waves in the dissipative layer in
one-dimensional planar geometry in plasmas with anisotropic
dissipative coefficients, a situation applicable to solar coronal
conditions. The plasma motion outside the dissipative layer is
described by the set of linear, ideal MHD equations. The wave
motion inside the dissipative layer is governed by Eq. (52). This
equation is linear, despite taking into consideration (quadratic
and cubic) nonlinearity. The Hall terms of the induction equa-
tion in the perpendicular direction relative to the ambient mag-
netic field cancel each other out.

The nonlinear corrections were calculated to explain why
Eq. (52), describing the nonlinear behaviour of wave dynamics,
is always linear. We found that, in the second order of approxi-
mation, magnetoacoustic modes are excited by the perturbations
of the linear order of approximation. These secondary waves act
to counteract the small pressure and density variations created
by the first order terms. In addition, these waves are not resonant
in the Alfvén dissipative layer. In the third order approximation
the perturbations become Alfvénic, however, these perturbations
are much smaller than those in the linear order of approxima-
tion. Equations (108) and (109) describe the expansion of large
and small variables, respectively, and demonstrate that all higher
order approximations of both large and small variables at the
Alfvén resonance are smaller than the linear order approxima-
tion, provided condition (66) is satisfied. This condition ensures
that the oscillation amplitude remains small inside the dissipa-
tive layer. From a naive point of view the linear theory is appli-
cable as soon as the oscillation amplitude is small. The example
of slow resonant waves clearly shows that this is not the case.
The nonlinear effects become important in the slow dissipative
layer as soon as ǫ ∼ R−2/3, i.e. as soon as the oscillation ampli-
tude in the dissipative layer, which is of the order of ǫR1/3, is of
the order of R−1/3 ≪ 1. We also found that any dispersive effect
due to the consideration of ions’ inertial length (Hall effect) is
absent from the governing equation.

This calculation of nonlinear corrections to resonant Alfvén
waves in dissipative layers allows us to apply the already well-
known linear theory for studying resonant Alfvén waves in the
solar corona with great accuracy, where the governing equation,
jump conditions and the absorption of wave energy are already
derived (see e.g., Sakurai et al. 1991; Goossens et al. 1995;
Erdélyi 1998).

It is interesting to note that this work can be transferred
to isotropic plasma rather easily. Shear viscosity, supplied by
Braginskii’s viscosity tensor (see Appendix A), acts exactly as
isotropic viscosity. Therefore, replacing η by ρ0a

ν in Eq. (52)
provides the required governing equation for resonant Alfvén
waves in isotropic plasmas. Moreover, the work on the non-
linear corrections presented in this paper is also unaltered by
anisotropy. This implies that we can consider resonant Alfvén
waves in dissipative layers throughout the solar atmosphere and
still use linear theory if condition (66) is satisfied.
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Appendix A: Braginskii’s viscosity tensor

and derivation of largest terms

In this Appendix, we shall derive the largest terms of
Braginskii’s viscosity tensor inside the Alfvén dissipative layer
to be used to study the nonlinearity effects. Braginskii’s viscos-
ity tensor comprises of five terms. Its divergence can be written
as (Braginskii 1965)

∇ · S = η0∇ · S0 + η1∇ · S1 + η2∇ · S2 − η3∇ · S3 − η4∇ · S4, (A.1)

Note that the terms proportional to η0, η1 and η2 in Eq. (A.1)
describe viscous dissipation, while terms proportional to η3 and
η4 are non-dissipative and describe the wave dispersion related
to the finite ion gyroradius. They will be ignored in what follows.
For simplicity in the body of the paper, we have taken η = η1.

The quantities S0, S1 and S2 are given by

S0 =

(
b
′ ⊗ b

′ − 1

3
I

) [
3b
′ · ∇(b

′ · u) − ∇ · u
]
, (A.2)

S1 = ∇ ⊗ u + (∇ ⊗ u)T − b
′ ⊗W −W ⊗ b

′

+
(
b
′ ⊗ b

′ − I
)
∇ · u +

(
b
′ ⊗ b

′ + I
)

b
′ · ∇

(
b
′ · u

)
, (A.3)

S2 = b
′ ⊗W +W ⊗ b

′ − 4
(
b
′ ⊗ b

′
)

b
′ · ∇

(
b
′ · u

)
, (A.4)

W = ∇
(
b
′ · u

)
+
(
b
′ · ∇

)
u. (A.5)

Here u = (u, v, w) is the velocity, b
′ = B0/B0, I is the unit tensor

and ⊗ indicates the dyadic product of two vectors. The super-
script “T” denotes a transposed tensor.

The first viscosity coefficient, η0, (compressional viscosity)
has the following approximate expression (see e.g., Ruderman
et al. 2000)

η0 =
ρ0kBT0τi

mp

, (A.6)

where ρ0 and T0 are the equilibrium density and pressure, mp is
the proton mass, kB the Boltzmann constant and τi the ion colli-
sion time. The other viscosity coefficients depend on the quantity
ωiτi, where ωi it the ion gyrofrequency. When ωiτi ≫ 1 these
coefficients are given by the approximate expressions

η1 =
η0

4 (ωiτi)
2
, η2 = 4η1. (A.7)

The viscosity described by the sum of the second and third terms
in Eq. (A.1) is the shear viscosity. For typical coronal condi-
tions ωiτi is of the order of 105−106, so according to Eq. (A.7)
the term proportional to η0 in Eq. (A.1) is much larger than the
second and third terms. However, it has been long understood
that the compressional viscosity does not remove the Alfvén sin-
gularity (see e.g., Erdélyi & Goossens 1995; Mocanu et al. 2008)
while shear viscosity does.

First, we shall calculate the components of the compres-
sional viscosity. We will use the notation of parallel and perpen-
dicular components as defined in the paper. It is straightforward
to obtain that

η0 (∇ · S0)x = 0, (A.8)

η0 (∇ · S0)⊥ = 0, (A.9)

η0 (∇ · S0)‖ = η0 cosα

(
2
∂2v‖

∂z2
cosα −

∂2u

∂x∂z
+
∂2v⊥

∂z2
sinα

)
. (A.10)
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The shear viscosity, as stated above, is the sum of the second
and third terms of Eq. (A.1). To evaluate these terms we use the
approximate expression for η1 and η2 given by Eq. (A.7). As a
result we obtain

η1

[
(∇ · S1)x + 4 (∇ · S2)x

]
= η1

[
∂2u

∂x2

+(1 + 3 cos2 α)
∂2u

∂z2
+ 4
∂2v‖

∂x∂z
cosα

]
, (A.11)

η1 [(∇ · S1)⊥ + 4 (∇ · S2)⊥]

= η1

[
∂2v⊥

∂x2
+
(
4 − 3 sin2 α − 16 sin6 α

) ∂2v⊥

∂z2

+4 sinα cosα
(
4 sin4 α − 1

) ∂2v‖

∂z2

]
, (A.12)

η1

[
(∇ · S1)‖ + 4 (∇ · S2)‖

]

= 4η1

{
∂2v‖

∂x2
+
[
1 + cos2 α

(
4 sin4 α − 1

)] ∂2v‖

∂z2

+
∂2u

∂x∂z
cosα −

(
4 sin4 α + 1

) ∂2v⊥

∂z2
cosα sinα

}
. (A.13)

Equations (A.8)−(A.13) are complicated, but we can simplify
them further by taking the largest term only in each equation.
For the viscosity in the parallel direction it would, at first, seem
obvious that the largest term will be proportional to η0 rather
than η1. However, some of the variables proportional to η1 have
derivatives with respect to x which produce enormous gradients
in the dissipative layer when there is a transversal inhomogene-
ity, hence some of the terms proportional to η1 are of the same
order as or larger than the terms proportional to η0. It is also
important to note that in the first order approximation the sec-
ond and third terms on the right-hand side of Eq. (A.10) cancel
(see Eq. (49)). For the normal and perpendicular components of
viscosity, the treatment is slightly simpler. The compressional
viscosity is zero, and as derivatives with respect to z are much
small that derivatives with respect to x, we can select the largest
term proportional to η1 by observation. Therefore, the viscosity
tensor can be approximated by

(∇ · S)x ≈ η1

∂2u

∂x2
, (A.14)

(∇ · S)⊥ ≈ η1

∂2v⊥

∂x2
, (A.15)

(∇ · S)‖ ≈ 4η1

∂2v‖

∂x2
. (A.16)

Equations (A.14)−(A.16) give an appropriate approximation to
Braginskii’s viscosity tensor when studying nonlinear resonant
Alfvén waves in dissipative layers. It is interesting to note that
the terms in Eqs. (A.14)−(A.16) are identical to the largest terms
when considering isotropic viscosity. Obviously, compressional
viscosity cannot remove the Alfvén singularity since Eq. (A.9)
is identically zero.

Appendix B: The derivation of the Hall term

in the induction equation for Alfvén resonant

waves

In this Appendix we will derive the components of the Hall term
in the induction equation and show that neglecting the Hall ef-
fect at the Alfvén resonance is a good approximation for typical

conditions throughout the solar atmosphere. The main reasons
qualitatively are as follows. When we are in the lower solar at-
mosphere (e.g. solar photosphere) the Hall conduction is much
smaller than the direct conduction since the product of the elec-
tron gyrofrequency,ωe, and collision time, τe, is less than unity
(see e.g., Priest 1984). For the upper atmosphere (e.g. chromo-
sphere, corona), where the productωeτe is greater than unity, the
Hall conduction has to be considered. However, when the Hall
terms are derived, the largest terms in the perpendicular direc-
tion relative to the ambient magnetic field cancel leaving only
higher order approximation terms which are far smaller than the
direct conduction. As the dominant dynamics of resonant Alfvén
waves in dissipative layer resides in the components of veloc-
ity and magnetic field perturbation in the perpendicular direc-
tion relative to the background magnetic field we can neglect the
Hall conduction completely from the analysis without affecting
the governing equation.

In order to estimate the relative importance of the Hall term
and resistive term in the dissipative layer we follow the sophisti-
cated analysis which was presented by Ruderman et al. (1997b)
and Clack & Ballai (2008). We do not write down all the steps
of the analysis, but rather give the salient points specific to the
Hall effect at the Alfvén resonance.

Equations (29) and (42) provide the following estimations in
the dissipative layer:

u = O(ǫ), v⊥ = O(ǫ1/2), v‖ = O(ǫ),

bx = O(ǫ), b⊥ = O(ǫ1/2) b‖ = O(ǫ), (B.1)

where ǫ still denotes the dimensionless amplitude of oscillations
far away from the dissipative layer. The thickness of the dissipa-
tive layer divided by the characteristic scale of inhomogeneity is
δc/linh = O(ǫ1/2). This gives rise to the estimations

linh

∂h

∂x
= O(ǫ−1/2h), linh

∂h

∂z
= O(h), l2inh

∂2h

∂z2
= O(h), (B.2)

where h denotes any of the quantities u, bx, b‖, b⊥ or v⊥. Since
the first term in the expansion of v‖ is independent of x, it fol-
lows that

linh

∂v‖

∂x
= O(v‖), linh

∂v‖

∂z
= O(v‖), l2inh

∂2v‖

∂x2
= O(ǫ−1/2v‖). (B.3)

We now need to calculate the components of the vectors of the
resistive term and the Hall term from the induction equation nor-
mal to the magnetic surfaces (the x-direction) and in the mag-
netic surfaces parallel and perpendicular to the equilibrium mag-
netic field lines. We use Eqs. (B.2) and (B.3) in order to estimate
all the terms and we only retain the largest. As a result we have

λ∇2Bx = λ
∂2bx

∂x2
+ . . . , (B.4)

λ∇2B⊥ = λ
∂2b⊥

∂x2
+ . . . , (B.5)

λ∇2B‖ = λ
∂2b‖

∂x2
+ . . . , (B.6)

Hx =
B0 cos2 α

µ0ene

∂2b⊥

∂z2
+ . . . , (B.7)

H⊥ =
B0

µ0ene

(
1

B0

dB0

dx

∂bx

∂x
+ cosα

∂2b‖

∂z∂x

)
+ . . . , (B.8)

H‖ = −
B0 cosα

µ0ene

∂2b⊥

∂z∂x
+ . . . , (B.9)
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where the dots indicate terms much smaller than those shown
explicitly. With the aid of Eqs. (B.1)−(B.3) we obtain the ratios

Hx

λ∇2Bx

∼ ǫ1/2ωeτe, (B.10)

H⊥

λ∇2B⊥
∼ ǫωeτe, (B.11)

H‖

λ∇2B‖
∼ ωeτe. (B.12)

For the Hall conduction to be significant in the direction of the
dominant dynamics of resonant Alfvén waves (i.e. in the per-
pendicular direction) we must have ǫωeτe >∼ 1. This is plausible
for the solar upper atmosphere. If this condition holds, then we
must consider the Hall term in the induction equation. However,
if Eq. (B.8) is expanded using Eq. (29) from Sect. 3 we obtain

ǫ3/2λ

⎧⎪⎪⎨⎪⎪⎩
1

B0

(
dB0

dx

)
∂b

(1)
x

∂ξ
+ cosα

∂2b
(1)

‖

∂θ∂ξ

⎫⎪⎪⎬⎪⎪⎭ + O(ǫ2). (B.13)

It should be noted that in deriving Eq. (B.13) we have used the
assumption that ǫωeτe = O(1). The terms inside the braces are
of the same order as the direct conduction. Hence, they would be
expected to appear in the governing equation. When substituting

for b
(1)
x and b

(1)

‖ using Eqs. (45) and (46), respectively, it is found

that the terms inside the brackets cancel

cosα

V

(
dB0

dx

)
∂u(1)

∂ξ
− cosα

V

(
dB0

dx

)
∂u(1)

∂ξ
= 0. (B.14)

Equation (B.14) shows that the Hall term in the perpendicular
component of induction is always smaller than the direct con-
duction in the solar atmosphere. The normal and parallel compo-
nents of the Hall conduction are, in fact, larger than the perpen-
dicular component. Nevertheless they play no role in derivation
of the governing equation of resonant Alfvén waves in dissipa-
tive layer. The parallel component is the largest of the three com-
ponents and this is to be expected as the Hall effect is strongest
at right angles to the dominant wave motion. This is in com-
plete agreement with the study on resonant slow waves by Clack
& Ballai (2008) which found the largest Hall effect was in the
perpendicular component of Hall conduction, which is at right
angles to the dominant dynamics of resonant slow waves.

In summary, it is a good approximation to neglect the Hall
term in the induction equation when studying resonant Alfvén

waves in dissipative layer. This approximation holds throughout
the entire solar atmosphere.
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