37 research outputs found

    Fgfr3 Is a Transcriptional Target of Ap2Ξ΄ and Ash2l-Containing Histone Methyltransferase Complexes

    Get PDF
    Polycomb (PcG) and trithorax (trxG) proteins play important roles in establishing lineage-specific genetic programs through induction of chromatin modifications that lead to gene silencing or activation. Previously, we described an association between the MLL/SET1 complexes and a highly restricted, gene-specific DNA-binding protein Ap2Ξ΄ that is required for recruitment of the MLL/SET1 complex to target Hoxc8 specifically. Here, we reduced levels of Ap2Ξ΄ and Ash2l in the neuroblastoma cell line, Neuro2A, and analyzed their gene expression profiles using whole-genome mouse cDNA microarrays. This analysis yielded 42 genes that are potentially co-regulated by Ap2Ξ΄ and Ash2l, and we have identified evolutionarily conserved Ap2-binding sites in 20 of them. To determine whether some of these were direct targets of the Ap2Ξ΄-Ash2l complex, we analyzed several promoters for the presence of Ap2Ξ΄ and Ash2l by chromatin immunoprecipitation (ChIP). Among the targets we screened, we identified Fgfr3 as a direct transcriptional target of the Ap2Ξ΄-Ash2l complex. Additionally, we found that Ap2Ξ΄ is necessary for the recruitment of Ash2l-containing complexes to this promoter and that this recruitment leads to trimethylation of lysine 4 of histone H3 (H3K4me3). Thus, we have identified several candidate targets of complexes containing Ap2Ξ΄ and Ash2l that can be used to further elucidate their roles during development and showed that Fgfr3 is a novel direct target of these complexes

    Neurod1 Suppresses Hair Cell Differentiation in Ear Ganglia and Regulates Hair Cell Subtype Development in the Cochlea

    Get PDF
    Background: At least five bHLH genes regulate cell fate determination and differentiation of sensory neurons, hair cells and supporting cells in the mammalian inner ear. Cross-regulation of Atoh1 and Neurog1 results in hair cell changes in Neurog1 null mice although the nature and mechanism of the cross-regulation has not yet been determined. Neurod1, regulated by both Neurog1 and Atoh1, could be the mediator of this cross-regulation. Methodology/Principal Findings: We used Tg(Pax2-Cre) to conditionally delete Neurod1 in the inner ear. Our data demonstrate for the first time that the absence of Neurod1 results in formation of hair cells within the inner ear sensory ganglia. Three cell types, neural crest derived Schwann cells and mesenchyme derived fibroblasts (neither expresses Neurod1) and inner ear derived neurons (which express Neurod1) constitute inner ear ganglia. The most parsimonious explanation is that Neurod1 suppresses the alternative fate of sensory neurons to develop as hair cells. In the absence of Neurod1, Atoh1 is expressed and differentiates cells within the ganglion into hair cells. We followed up on this effect in ganglia by demonstrating that Neurod1 also regulates differentiation of subtypes of hair cells in the organ of Corti. We show that in Neurod1 conditional null mice there is a premature expression of several genes in the apex of the developing cochlea and outer hair cells are transformed into inner hair cells. Conclusions/Significance: Our data suggest that the long noted cross-regulation of Atoh1 expression by Neurog1 migh

    The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex

    Get PDF
    The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear

    The Prosensory Function of Sox2 in the Chicken Inner Ear Relies on the Direct Regulation of Atoh1

    Get PDF
    The proneural gene Atoh1 is crucial for the development of inner ear hair cells and it requires the function of the transcription factor Sox2 through yet unknown mechanisms. In the present work, we used the chicken embryo and HEK293T cells to explore the regulation of Atoh1 by Sox2. The results show that hair cells derive from Sox2-positive otic progenitors and that Sox2 directly activates Atoh1 through a transcriptional activator function that requires the integrity of Sox2 DNA binding domain. Atoh1 activation depends on Sox transcription factor binding sites (SoxTFBS) present in the Atoh1 3β€² enhancer where Sox2 directly binds, as shown by site directed mutagenesis and chromatin immunoprecipitation (ChIP). In the inner ear, Atoh1 enhancer activity is detected in the neurosensory domain and it depends on Sox2. Dominant negative competition (Sox2HMG-Engrailed) and mutation of the SoxTFBS abolish the reporter activity in vivo. Moreover, ChIP assay in isolated otic vesicles shows that Sox2 is bound to the Atoh1 enhancer in vivo. However, besides activating Atoh1, Sox2 also promotes the expression of Atoh1 negative regulators and the temporal profile of Atoh1 activation by Sox2 is transient suggesting that Sox2 triggers an incoherent feed-forward loop. These results provide a mechanism for the prosensory function of Sox2 in the inner ear. We suggest that sensory competence is established early in otic development through the activation of Atoh1 by Sox2, however, hair cell differentiation is prevented until later stages by the parallel activation of negative regulators of Atoh1 function

    RAF Kinase Activity Regulates Neuroepithelial Cell Proliferation and Neuronal Progenitor Cell Differentiation during Early Inner Ear Development

    Get PDF
    Background: Early inner ear development requires the strict regulation of cell proliferation, survival, migration and differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I) plays a key role in embryonic and postnatal otic development by triggering the activation of intracellular lipid and protein kinases. RAF kinases are serine/threonine kinases that regulate the highly conserved RAS-RAF-MEK-ERK signaling cascade involved in transducing the signals from extracellular growth factors to the nucleus. However, the regulation of RAF kinase activity by growth factors during development is complex and still not fully understood. Methodology/Principal Findings: By using a combination of qRT-PCR, Western blotting, immunohistochemistry and in situ hybridization, we show that C-RAF and B-RAF are expressed during the early development of the chicken inner ear in specific spatiotemporal patterns. Moreover, later in development B-RAF expression is associated to hair cells in the sensory patches. Experiments in ex vivo cultures of otic vesicle explants demonstrate that the influence of IGF-I on proliferation but not survival depends on RAF kinase activating the MEK-ERK phosphorylation cascade. With the specific RAF inhibitor Sorafenib, we show that blocking RAF activity in organotypic cultures increases apoptosis and diminishes the rate of cell proliferation in the otic epithelia, as well as severely impairing neurogenesis of the acoustic-vestibular ganglion (AVG) and neuron maturation. Conclusions/Significance: We conclude that RAF kinase activity is essential to establish the balance between cell proliferation and death in neuroepithelial otic precursors, and for otic neuron differentiation and axonal growth at the AVG

    Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton

    Get PDF
    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration

    Overactivation of Notch1 Signaling Induces Ectopic Hair Cells in the Mouse Inner Ear in an Age-Dependent Manner

    Get PDF
    Background: During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling. Methodology/Principal Findings: We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAG CreER+; Rosa26-NICD loxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICDnegative). Conclusions/Significance: Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additiona

    XRad17 is required for the activation of XChk1 but not XCds1 during checkpoint signaling in Xenopus.

    No full text
    The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends

    Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea

    Get PDF
    Sox2 is a high-mobility transcription factor that is one of the earliest markers of developing inner ear prosensory domains. In humans, mutations in SOX2 cause sensorineural hearing loss and a loss of function study in mice showed that Sox2 is required for prosensory formation in the cochlea. However, the specific roles of Sox2 have not been determined. Here we illustrate a dynamic role of Sox2 as an early permissive factor in prosensory domain formation followed by a mutually antagonistic relationship with Atoh1, a bHLH protein necessary for hair cell development. We demonstrate that decreased levels of Sox2 result in precocious hair cell differentiation and an over production of inner hair cells and that these effects are likely mediated through an antagonistic interaction between Sox2 and the bHLH molecule Atoh1. Using gain- and loss-of-function experiments we provide evidence for the molecular pathway responsible for the formation of the cochlear prosensory domain. Sox2 expression is promoted by Notch signaling and Prox1, a homeobox transcription factor, is a downstream target of Sox2. These results demonstrate crucial and diverse roles for Sox2 in the development, specification, and maintenance of sensory cells within the cochlea

    XRad17 Is Required for the Activation of XChk1 But Not XCds1 during Checkpoint Signaling in Xenopus

    No full text
    The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends
    corecore