186 research outputs found

    Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK

    Get PDF
    The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the hostΒ΄s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-Ξ”N3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Centro CientΓ­fico TecnolΓ³gico Conicet - Mendoza. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MΓ©dicas. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Centro CientΓ­fico TecnolΓ³gico Conicet - Mendoza. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MΓ©dicas. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, JesΓΊs SebastiΓ‘n. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Centro CientΓ­fico TecnolΓ³gico Conicet - Mendoza. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MΓ©dicas. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Centro CientΓ­fico TecnolΓ³gico Conicet - Mendoza. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MΓ©dicas. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Centro CientΓ­fico TecnolΓ³gico Conicet - Mendoza. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MΓ©dicas. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Centro CientΓ­fico TecnolΓ³gico Conicet - Mendoza. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MΓ©dicas. Instituto de HistologΓ­a y EmbriologΓ­a de Mendoza Dr. Mario H. Burgos; Argentin

    Calcium-dependent dynamics of cadherin interactions at cell–cell junctions

    Get PDF
    Cadherins play a key role in the dynamics of cell–cell contact formation and remodeling of junctions and tissues. Cadherin–cadherin interactions are gated by extracellular Ca^(2+), which serves to rigidify the cadherin extracellular domains and promote trans junctional interactions. Here we describe the direct visualization and quantification of spatiotemporal dynamics of N-cadherin interactions across intercellular junctions in living cells using a genetically encodable FRET reporter system. Direct measurements of transjunctional cadherin interactions revealed a sudden, but partial, loss of homophilic interactions (Ο„ = 1.17 Β± 0.06 s^(βˆ’1)) upon chelation of extracellular Ca^(2+). A cadherin mutant with reduced adhesive activity (W2A) exhibited a faster, more substantial loss of homophilic interactions (Ο„ = 0.86 Β± 0.02 s^(βˆ’1)), suggesting two types of native cadherin interactionsβ€”one that is rapidly modulated by changes in extracellular Ca^(2+) and another with relatively stable adhesive activity that is Ca^(2+) independent. The Ca^(2+)-sensitive dynamics of cadherin interactions were transmitted to the cell interior where Ξ²-catenin translocated to N-cadherin at the junction in both cells. These data indicate that cadherins can rapidly convey dynamic information about the extracellular environment to both cells that comprise a junction

    Synthetic spatially graded Rac activation drives directed cell polarization and locomotion

    Full text link
    Migrating cells possess intracellular gradients of Rho GTPases, but it is unknown whether these shallow gradients themselves can induce motility. Here we describe a new method to present cells with induced linear gradients of active, endogenous Rac without receptor activation. Gradients as low as 15% were sufficient to not only trigger cell migration up the synthetic gradient, but also to induce both cell polarization and repolarization. Response kinetics were inversely proportional to Rac gradient values, in agreement with a new mathematical model, suggesting a role for natural input gradient amplification upstream of Rac. Increases in Rac levels beyond a well-defined threshold dramatically augmented polarization and decreased sensitivity to the gradient value. The threshold was governed by initial cell polarity and PI3K activity, supporting a role for both in defining responsiveness to natural or synthetic Rac activation. Our methodology suggests a general way to investigate processes regulated by intracellular signaling gradients

    Changing climateβ€”changing pathogens: Toxoplasma gondii in North-Western Europe

    Get PDF
    In this review, we describe the effects of global climate change for one specific pathogen: the parasite Toxoplasma gondii. It is postulated that an increase of T. gondii prevalence in humans can occur in some regions of North-Western Europe as a result of changing environmental conditions. Such a change can be predicted by using Global Climate Change models. We have elaborated such a prediction for one scenario (SRES A1) by using one specific model (CCSR/NRIES) as an example. Next to environmental factors, also anthropogenic factors may contribute to increased prevalence of T. gondii in this region. In order to counter the potential severe consequences of a potential increase resulting from the combination of climatic and anthropogenic factors, there is an urgent need for the development of a human vaccine. Until a vaccine that offers complete protection is developed, the emphasis should be on treatment optimization and prevention

    Lentiviral Vectors and Protocols for Creation of Stable hESC Lines for Fluorescent Tracking and Drug Resistance Selection of Cardiomyocytes

    Get PDF
    Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications

    Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET

    Get PDF
    Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Forster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.Peer reviewe

    Combining Computational Prediction of Cis-Regulatory Elements with a New Enhancer Assay to Efficiently Label Neuronal Structures in the Medaka Fish

    Get PDF
    The developing vertebrate nervous system contains a remarkable array of neural cells organized into complex, evolutionarily conserved structures. The labeling of living cells in these structures is key for the understanding of brain development and function, yet the generation of stable lines expressing reporter genes in specific spatio-temporal patterns remains a limiting step. In this study we present a fast and reliable pipeline to efficiently generate a set of stable lines expressing a reporter gene in multiple neuronal structures in the developing nervous system in medaka. The pipeline combines both the accurate computational genome-wide prediction of neuronal specific cis-regulatory modules (CRMs) and a newly developed experimental setup to rapidly obtain transgenic lines in a cost-effective and highly reproducible manner. 95% of the CRMs tested in our experimental setup show enhancer activity in various and numerous neuronal structures belonging to all major brain subdivisions. This pipeline represents a significant step towards the dissection of embryonic neuronal development in vertebrates

    Functional Complexity of the Axonal Growth Cone: A Proteomic Analysis

    Get PDF
    The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at β‰₯99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions
    • …
    corecore