639 research outputs found

    Multi-mass solvers for lattice QCD on GPUs

    Full text link
    Graphical Processing Units (GPUs) are more and more frequently used for lattice QCD calculations. Lattice studies often require computing the quark propagators for several masses. These systems can be solved using multi-shift inverters but these algorithms are memory intensive which limits the size of the problem that can be solved using GPUs. In this paper, we show how to efficiently use a memory-lean single-mass inverter to solve multi-mass problems. We focus on the BiCGstab algorithm for Wilson fermions and show that the single-mass inverter not only requires less memory but also outperforms the multi-shift variant by a factor of two.Comment: 27 pages, 6 figures, 3 Table

    Flying phase mask for the printing of long submicron-period stitchingless gratings

    No full text
    International audienceLong and stitchingless gratings are printed by means of a read/write head comprising a phase mask illuminated by an intensity modulated laser beam and a reference grating displacement sensor which dictates the modulation period real time. A nearly perfect grating copying is achieved by fixing the sensor grating scale and the written grating substrate on a long platform sliding under the read/write hea

    Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition

    Get PDF
    Addition of yttrium in HfO2 thin films prepared on silicon by metal organic chemical vapor deposition is investigated in a wide compositional range (2.0-99.5 at. %). The cubic structure of HfO2 is stabilized for 6.5 at. %. The permittivity is maximum for yttrium content of 6.5-10 at. %; in this range, the effective permittivity, which results from the contribution of both the cubic phase and silicate phase, is of 22. These films exhibit low leakage current density (5x10(-7) A/cm(2) at -1 V for a 6.4 nm film). The cubic phase is stable upon postdeposition high temperature annealing at 900 degrees C under NH3. (c) 2006 American Institute of Physics

    K pi scattering for isospin 1/2 and 3/2 in lattice QCD

    Full text link
    We simulate K pi scattering in s-wave and p-wave for both isospins I=1/2, 3/2 using quark-antiquark and meson-meson interpolating fields. We extract the elastic phase shifts delta at several values of the K-pi relative momenta. The resulting phases exhibit qualitative agreement with the experimental phases in all four channels. We express the s-wave phase shifts near threshold in terms of the scattering length and the effective range. Our K pi system has zero total momentum and is simulated on a single ensemble with two dynamical quarks, so results apply for mpi=266 MeV and mK=552 MeV in our simulation. The backtracking contractions in both I=1/2 channels are handled by the use of Laplacian-Heavyside smeared quarks within the distillation method. Elastic phases are extracted from the energy levels using Luscher's relations. In all four channels we observe the expected K(n)pi(-n) scattering states, which are shifted due to the interaction. In both attractive I=1/2 channels we observe additional states that are related to resonances; we attribute them to K_0^*(1430) in s-wave and K*(892), K*(1410) and K*(1680) in p-wave.Comment: 17 pages, 7 figures, version published in PR

    Pattern and process in Amazon tree turnover, 1976-2001

    Get PDF
    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests

    Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Full text link
    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure
    • …
    corecore