225 research outputs found
APASS Landolt-Sloan BVgri photometry of RAVE stars. I. Data, effective temperatures and reddenings
We provide APASS photometry in the Landolt BV and Sloan g'r'i' bands for all
the 425,743 stars included in the latest 4th RAVE Data Release. The internal
accuracy of the APASS photometry of RAVE stars, expressed as error of the mean
of data obtained and separately calibrated over a median of 4 distinct
observing epochs and distributed between 2009 and 2013, is 0.013, 0.012, 0.012,
0.014 and 0.021 mag for B, V, g', r' and i' band, respectively. The equally
high external accuracy of APASS photometry has been verified on secondary
Landolt and Sloan photometric standard stars not involved in the APASS
calibration process, and on a large body of literature data on field and
cluster stars, confirming the absence of offsets and trends. Compared with the
Carlsberg Meridian Catalog (CMC-15), APASS astrometry of RAVE stars is accurate
to a median value of 0.098 arcsec. Brightness distribution functions for the
RAVE stars have been derived in all bands. APASS photometry of RAVE stars,
augmented by 2MASS JHK infrared data, has been chi2 fitted to a densely
populated synthetic photometric library designed to widely explore in
temperature, surface gravity, metallicity and reddening. Resulting Teff and
E(B-V), computed over a range of options, are provided and discussed, and will
be kept updated in response to future APASS and RAVE data releases. In the
process it is found that the reddening caused by an homogeneous slab of dust,
extending for 140 pc on either side of the Galactic plane and responsible for
E(B-V,poles)=0.036 +/- 0.002 at the galactic poles, is a suitable approximation
of the actual reddening encountered at Galactic latitudes |b|>=25 deg.Comment: Astronomical Journal, in press. Resolution of Figures degrated to
match arXiv file size limit
A Census of Baryons and Dark Matter in an Isolated, Milky Way-sized Elliptical Galaxy
We present a study of the dark and luminous matter in the isolated elliptical
galaxy NGC720, based on deep X-ray observations made with Chandra and Suzaku.
The gas is reliably measured to ~R2500, allowing us to place good constraints
on the enclosed mass and baryon fraction (fb) within this radius
(M2500=1.6e12+/-0.2e12 Msun, fb(2500)=0.10+/-0.01; systematic errors are
<~20%). The data indicate that the hot gas is close to hydrostatic, which is
supported by good agreement with a kinematical analysis of the dwarf satellite
galaxies. We confirm a dark matter (DM) halo at ~20-sigma. Assuming an NFW DM
profile, our physical model for the gas distribution enables us to obtain
meaningful constraints at scales larger than R2500, revealing that most of the
baryons are in the hot gas. We find that fb within Rvir is consistent with the
Cosmological value, confirming theoretical predictions that a ~Milky Way-mass
(Mvir=3.1e12+/-0.4e12 Msun) galaxy can sustain a massive, quasi-hydrostatic gas
halo. While fb is higher than the cold baryon fraction typically measured in
similar-mass spiral galaxies, both the gas fraction (fg) and fb in NGC720 are
consistent with an extrapolation of the trends with mass seen in massive galaxy
groups and clusters. After correcting for fg, the entropy profile is close to
the self-similar prediction of gravitational structure formation simulations,
as observed in galaxy clusters. Finally, we find a strong heavy metal abundance
gradient in the ISM similar to those observed in massive galaxy groups.Comment: 23 pages, 13 figures, 4 tables. Accepted for publication in the
Astrophysical Journal. Minor modifications to match accepted version.
Conclusions unchange
Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.
OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age
Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling
A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division
MicroRNA-34a Modulates c-Myc Transcriptional Complexes to Suppress Malignancy in Human Prostate Cancer Cells
MicroRNA-34a (miR-34a), a potent mediator of tumor suppressor p53, has been reported to function as a tumor suppressor and miR-34a was found to be downregulated in prostate cancer tissues. We studied the functional effects of miR-34a on c-Myc transcriptional complexes in PC-3 prostate cancer cells. Transfection of miR-34a into PC-3 cells strongly inhibited in vitro cell proliferation, cell invasion and promoted apoptosis. Transfection of miR-34a into PC-3 cells also significantly inhibited in vivo xenograft tumor growth in nude mice. miR-34a downregulated expression of c-Myc oncogene by targeting its 3′ UTR as shown by luciferase reporter assays. miR-34a was found to repress RhoA, a regulator of cell migration and invasion, by suppressing c-Myc–Skp2–Miz1 transcriptional complex that activates RhoA. Overexpression of c-Myc reversed miR-34a suppression of RhoA expression, suggesting that miR-34a inhibits invasion by suppressing RhoA through c-Myc. miR-34a was also found to repress c-Myc-pTEFB transcription elongation complex, indicating one of the mechanisms by which miR-34a has profound effects on cellular function. This is the first report to document that miR-34a suppresses assembly and function of the c-Myc–Skp2–Miz1 complex that activates RhoA and the c-Myc-pTEFB complex that elongates transcription of various genes, suggesting a novel role of miR-34a in the regulation of transcription by c-Myc complex
Childhood Obstructive Sleep Apnea Associates with Neuropsychological Deficits and Neuronal Brain Injury
BACKGROUND: Childhood obstructive sleep apnea (OSA) is associated with neuropsychological deficits of memory, learning, and executive function. There is no evidence of neuronal brain injury in children with OSA. We hypothesized that childhood OSA is associated with neuropsychological performance dysfunction, and with neuronal metabolite alterations in the brain, indicative of neuronal injury in areas corresponding to neuropsychological function. METHODS AND FINDINGS: We conducted a cross-sectional study of 31 children (19 with OSA and 12 healthy controls, aged 6–16 y) group-matched by age, ethnicity, gender, and socioeconomic status. Participants underwent polysomnography and neuropsychological assessments. Proton magnetic resonance spectroscopic imaging was performed on a subset of children with OSA and on matched controls. Neuropsychological test scores and mean neuronal metabolite ratios of target brain areas were compared. Relative to controls, children with severe OSA had significant deficits in IQ and executive functions (verbal working memory and verbal fluency). Children with OSA demonstrated decreases of the mean neuronal metabolite ratio N-acetyl aspartate/choline in the left hippocampus (controls: 1.29, standard deviation [SD] 0.21; OSA: 0.91, SD 0.05; p = 0.001) and right frontal cortex (controls: 2.2, SD 0.4; OSA: 1.6, SD 0.4; p = 0.03). CONCLUSIONS: Childhood OSA is associated with deficits of IQ and executive function and also with possible neuronal injury in the hippocampus and frontal cortex. We speculate that untreated childhood OSA could permanently alter a developing child's cognitive potential
A Therapeutic Chemical Chaperone Inhibits Cholera Intoxication and Unfolding/Translocation of the Cholera Toxin A1 Subunit
Cholera toxin (CT) travels as an intact AB5 protein toxin from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin. Translocation of CTA1 from the ER to the cytosol is then facilitated by the quality control mechanism of ER-associated degradation (ERAD). Thermal instability in the isolated CTA1 subunit generates an unfolded toxin conformation that acts as the trigger for ERAD-mediated translocation to the cytosol. In this work, we show by circular dichroism and fluorescence spectroscopy that exposure to 4-phenylbutyric acid (PBA) inhibited the thermal unfolding of CTA1. This, in turn, blocked the ER-to-cytosol export of CTA1 and productive intoxication of either cultured cells or rat ileal loops. In cell culture studies PBA did not affect CT trafficking to the ER, CTA1 dissociation from the holotoxin, or functioning of the ERAD system. PBA is currently used as a therapeutic agent to treat urea cycle disorders. Our data suggest PBA could also be used in a new application to prevent or possibly treat cholera
- …