109 research outputs found

    Identification of new DNA i-motif binding ligands through a fluorescent intercalator displacement assay

    Get PDF
    i-Motifs are quadruplex DNA structures formed from sequences rich in cytosine and held together by intercalated, hemi-protonated cytosine–cytosine base pairs. These sequences are prevalent in gene promoter regions and may play a role in gene transcription. Targeting these structures with ligands could provide a novel way to target genetic disease but there are very few ligands which have been shown to interact with i-motif DNA. Fluorescent intercalator displacement (FID) assays are a simple way to screen ligands against DNA secondary structures. Here we characterise how thiazole orange interacts with i-motif DNA and assess its ability for use in a FID assay. Additionally, we report FID-based ligand screening using thiazole orange against the i-motif forming sequence from the human telomere to reveal new i-motif binding compounds which have the potential for further development

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    Binding of Gemini Bisbenzimidazole Drugs with Human Telomeric G-Quadruplex Dimers: Effect of the Spacer in the Design of Potent Telomerase Inhibitors

    Get PDF
    The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3′-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or n-mers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3)8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties

    The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells

    Get PDF
    We report that the cationic porphyrin TmPyP4, which is known mainly as a DNA G-quadruplex stabilizer, unfolds an unusually stable all purine RNA G-quadruplex (M3Q) that is located in the 5′-UTR of MT3-MMP mRNA. When the interaction between TmPyP4 and M3Q was monitored by UV spectroscopy a 22-nm bathochromic shift and 75% hypochromicity of the porphin major Soret band was observed indicating direct binding of the two molecules. TmPyP4 disrupts folded M3Q in a concentration-dependent fashion as was observed by circular dichroism (CD), 1D 1H NMR and native gel electrophoresis. Additionally, when TmPyP4 is present during the folding process it inhibits the M3Q RNA from adopting a G-quadruplex structure. Using a dual reporter gene construct that contained the M3Q sequence alone or the entire 5′-UTR of MT3-MMP mRNA, we report here that TmPyP4 can relieve the inhibitory effect of the M3Q G-quadruplex. However, the same concentrations of TmPyP4 failed to affect translation of a mutated construct. Thus, TmPyP4 has the ability to unfold an RNA G-quadruplex of extreme stability and modulate activity of a reporter gene presumably via the disruption of the G-quadruplex

    Modelling the regulation of telomere length: the effects of telomerase and G-quadruplex stabilising drugs

    Get PDF
    Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to inhibit the activity of telomerase. We investigate the dynamics of telomere length in different conformational states, namely t-loops, G-quadruplex structures and those being elongated by telomerase. By formulating deterministic differential equation models we study the effects of various levels of both telomerase and concentrations of a G4-stabilising drug on the distribution of telomere lengths, and analyse how these effects evolve over large numbers of cell generations. As well as calculating numerical solutions, we use quasicontinuum methods to approximate the behaviour of the system over time, and predict the shape of the telomere length distribution. We find those telomerase and G4-concentrations where telomere length maintenance is successfully regulated. Excessively high levels of telomerase lead to continuous telomere lengthening, whereas large concentrations of the drug lead to progressive telomere erosion. Furthermore, our models predict a positively skewed distribution of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean telomere length at equilibrium. Our model results for telomere length distributions of telomerase-positive cells in drug-free assays are in good agreement with the limited amount of experimental data available

    The G-Quadruplex Ligand Telomestatin Impairs Binding of Topoisomerase IIIα to G-Quadruplex-Forming Oligonucleotides and Uncaps Telomeres in ALT Cells

    Get PDF
    In Alternative Lengthening of Telomeres (ALT) cell lines, specific nuclear bodies called APBs (ALT-associated PML bodies) concentrate telomeric DNA, shelterin components and recombination factors associated with telomere recombination. Topoisomerase IIIα (Topo III) is an essential telomeric-associated factor in ALT cells. We show here that the binding of Topo III to telomeric G-overhang is modulated by G-quadruplex formation. Topo III binding to G-quadruplex-forming oligonucleotides was strongly inhibited by telomestatin, a potent and specific G-quadruplex ligand. In ALT cells, telomestatin treatment resulted in the depletion of the Topo III/BLM/TRF2 complex and the disruption of APBs and led to the segregation of PML, shelterin components and Topo III. Interestingly, a DNA damage response was observed at telomeres in telomestatin-treated cells. These data indicate the importance of G-quadruplex stabilization during telomere maintenance in ALT cells. The function of TRF2/Topo III/BLM in the resolution of replication intermediates at telomeres is discussed

    RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles

    Get PDF
    Tandem stretches of guanines can associate in hydrogen-bonded arrays to form G-quadruplexes, which are stabilized by K+ ions. Using computational methods, we searched for G-Quadruplex Sequence (GQS) patterns in the model plant species Arabidopsis thaliana. We found ∼1200 GQS with a G3 repeat sequence motif, most of which are located in the intergenic region. Using a Markov modeled genome, we determined that GQS are significantly underrepresented in the genome. Additionally, we found ∼43 000 GQS with a G2 repeat sequence motif; notably, 80% of these were located in genic regions, suggesting that these sequences may fold at the RNA level. Gene Ontology functional analysis revealed that GQS are overrepresented in genes encoding proteins of certain functional categories, including enzyme activity. Conversely, GQS are underrepresented in other categories of genes, notably those for non-coding RNAs such as tRNAs and rRNAs. We also find that genes that are differentially regulated by drought are significantly more likely to contain a GQS. CD-detected K+ titrations performed on representative RNAs verified formation of quadruplexes at physiological K+ concentrations. Overall, this study indicates that GQS are present at unique locations in Arabidopsis and that folding of RNA GQS may play important roles in regulating gene expression
    corecore