733 research outputs found
Telemetry receiver
Communications system maintains phase lock of weak telemetry signals with a minimal expenditure of power and bandwidth. An estimate of the frequency variation as a function of time is used to achieve coherent phase demodulation
ANISAP: A three-dimensional finite element program for laminated composites subjected to mechanical loading
ANISAP is a 3-D finite element FORTRAN 77 computer code for linear elastic, small strain, analysis of laminated composites with arbitrary geometry including free edges and holes. Individual layers may be isotropic or transversely isotropic in material principal coordinates; individual layers may be rotated off-axis about a global z-axis. The laminate may be a hybrid. Three different isoparametric elements, variable order of gaussian integration, calculation of stresses at element boundaries, and loading by either nodal displacement of forces are included in the program capability. Post processing capability includes failure analysis using the tensor polynominal failure criterion
Estimating sowing and harvest dates based on the Asian summer monsoon
Sowing and harvest dates are a significant source of uncertainty within crop models, especially for regions where high-resolution data are unavailable or, as is the case in future climate runs, where no data are available at all. Global datasets are not always able to distinguish when wheat is grown in tropical and subtropical regions, and they are also often coarse in resolution. South Asia is one such region where large spatial variation means higher-resolution datasets are needed, together with greater clarity for the timing of the main wheat growing season. Agriculture in South Asia is closely associated with the dominating climatological phenomenon, the Asian summer monsoon (ASM). Rice and wheat are two highly important crops for the region, with rice being mainly cultivated in the wet season during the summer monsoon months and wheat during the dry winter. We present a method for estimating the crop sowing and harvest dates for rice and wheat using the ASM onset and retreat. The aim of this method is to provide a more accurate alternative to the global datasets of cropping calendars than is currently available and generate more representative inputs for climate impact assessments.
We first demonstrate that there is skill in the model prediction of monsoon onset and retreat for two downscaled general circulation models (GCMs) by comparing modelled precipitation with observations. We then calculate and apply sowing and harvest rules for rice and wheat for each simulation to climatological estimates of the monsoon onset and retreat for a present day period. We show that this method reproduces the present day sowing and harvest dates for most parts of India. The application of the method to two future simulations demonstrates that the estimated sowing and harvest dates are successfully modified to ensure that the growing season remains consistent with the internal model climate. The study therefore provides a useful way of modelling potential growing season adaptations to changes in future climate
On the motion of a classical charged particle
We show that the Lorentz-Dirac equation is not an unavoidable consequence of
energy-momentum conservation for a point charge. What follows solely from
conservation laws is a less restrictive equation already obtained by Honig and
Szamosi. The latter is not properly an equation of motion because, as it
contains an extra scalar variable, it does not determine the future evolution
of the charge. We show that a supplementary constitutive relation can be added
so that the motion is determined and free from the troubles that are customary
in Lorentz-Dirac equation, i. e. preacceleration and runaways
Lars Hætta’s miniature world: Sámi prison op-art autoethnography
This article examines a collection of miniature objects, now held in museum collections, which were originally made by a Sámi political prisoner in Norway during the mid-19th century as part of an educational programme. The author draws on recent developments in the theory of miniaturization to consider these miniatures as examples of prison op-art autoethnography: communicative devices which seek to address broad and complex social issues through the process of the creation and distribution of semiophorically functionless mimetic objects of reduced scale and complexity, and which reflect the restrictions of incarcerated artistic expression and the questions this raises regarding authenticity and hybridity
NF-κB-inducing kinase regulates selected gene expression in the Nod2 signaling pathway
The innate immune system surveys the extra- and intracellular environment for the presence of microbes. Among the intracellular sensors is a protein known as Nod2, a cytosolic protein containing a leucine-rich repeat domain. Nod2 is believed to play a role in determining host responses to invasive bacteria. A key element in upregulating host defense involves activation of the NF-κB pathway. It has been suggested through indirect studies that NF-κB-inducing kinase, or NIK, may be involved in Nod2 signaling. Here we have used macrophages derived from primary explants of bone marrow from wild-type mice and mice that either bear a mutation in NIK, rendering it inactive, or are derived from NIK(−/−) mice, in which the NIK gene has been deleted. We show that NIK binds to Nod2 and mediates induction of specific changes induced by the specific Nod2 activator, muramyl dipeptide, and that the role of NIK occurs in settings where both the Nod2 and TLR4 pathways are activated by their respective agonists. Specifically, we have linked NIK to the induction of the B-cell chemoattractant known as BLC and suggest that this chemokine may play a role in processes initiated by Nod2 activation that lead to improved host defense
Hydrogen Epoch of Reionization Array (HERA)
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to
measure 21 cm emission from the primordial intergalactic medium (IGM)
throughout cosmic reionization (), and to explore earlier epochs of our
Cosmic Dawn (). During these epochs, early stars and black holes
heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is
designed to characterize the evolution of the 21 cm power spectrum to constrain
the timing and morphology of reionization, the properties of the first
galaxies, the evolution of large-scale structure, and the early sources of
heating. The full HERA instrument will be a 350-element interferometer in South
Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz.
Currently, 19 dishes have been deployed on site and the next 18 are under
construction. HERA has been designated as an SKA Precursor instrument.
In this paper, we summarize HERA's scientific context and provide forecasts
for its key science results. After reviewing the current state of the art in
foreground mitigation, we use the delay-spectrum technique to motivate
high-level performance requirements for the HERA instrument. Next, we present
the HERA instrument design, along with the subsystem specifications that ensure
that HERA meets its performance requirements. Finally, we summarize the
schedule and status of the project. We conclude by suggesting that, given the
realities of foreground contamination, current-generation 21 cm instruments are
approaching their sensitivity limits. HERA is designed to bring both the
sensitivity and the precision to deliver its primary science on the basis of
proven foreground filtering techniques, while developing new subtraction
techniques to unlock new capabilities. The result will be a major step toward
realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table
Day to Day Variability of Dynamic Knee Joint Stability in Healthy Individuals
The cause of osteoarthritis remains unknown; however abnormal joint mechanics are speculated to be an initiating factor [1]. Relating the Finite Helical Axis (FHA) to joint health may provide a means of predicting risk of joint degeneration [2]. To study dynamic knee joint stability using FHA and electromyography (EMG), it is valuable to quantify the day to day variance of these measures in a healthy population. It was hypothesized that there would be no statistically significant differences in FHA parameters or muscle patterns between days for healthy individuals. Three healthy females with intact anterior cruciate ligaments were recruited and tested 3 times during one week. Three-dimensional data for FHA determination was collected from reflective skin markers placed on each lower extremity (3 markers/segment) using an 8-camera (120 Hz) video motion capture system (Motion Analysis Corp.). A 16-channel EMG system recorded muscle activation patterns from 6 major muscles of the leg. Each subject performed two dynamic tasks: unconstrained knee flexion and extension while seated, and a single leg squat and rise. Data was analyzed using in house programs written in Matlab 7.1 (Mathworks Inc.). Four FHA parameters were described: location, translation, orientation and dispersion [2]. Muscle activity patterns were quantified using a wavelet analysis approach [3]. Due to the small sample size, a non-parametric Friedman’s test was used to detect differences in dynamic knee joint stability between days (p=0.05). Significant differences (p=0.028) were found for the extension phase of the squat in the contra lateral legs for location y, which describes the anterior/posterior location of the FHA in the knee. No significant differences were detected for any other FHA or EMG parameters. This finding suggests that the y location of the FHA during the extension phase of the squat task changes across days, and must be carefully interpreted in future studies
MRI-Based Knee Joint Laxity Measure in Healthy Individuals
A functional MRI based knee joint laxity device was developed by the current research group to enable three-dimensional (3D) evaluation of change in ligament length as a function of loading [1]. Previous studies have used the knee loading apparatus (KLA) to quantify knee joint laxity in the dominant leg of healthy individuals [1]; however anterior laxity of the knee is reported clinically as a left-right difference, and not absolute values [2]. Therefore, the purpose of this study was to quantify side-to-side differences in knee joint laxity using the KLA in a healthy population. It was hypothesized that there would be no statistically significant differences in knee joint laxity between legs for healthy individuals. One healthy female with an intact anterior cruciate ligament was recruited and tested 3 times during the span of 10 days. Magnetic Resonance (MR) imaging was used in conjunction with the KLA to obtain images of the knee joint geometry during an unloaded state and at an anterior load of 133 N. Sagittal images of the knee were manually digitized using SliceOmatic (Tomovision) to obtain 3D volumes of the femur and tibia. The displacement of the tibia at 133N was obtained from the 3D joint position of the femur relative to the tibia, specifically anterior displacement of the tibia [1]. Due to complications with data collection, results are only available for day 2 for the right leg, and days 1 and 3 for the left leg. The anterior displacement of the tibia under an anterior load of 133N was 1.29 mm for the right leg, and 0.62 ± 0.42 mm for the left leg. Due to the sample size of 1, statistical analysis was not performed. This is preliminary data; future studies will increase the number of subjects and collect data at multiple load levels
- …
