26 research outputs found

    Occurrence of testicular microlithiasis in androgen insensitive hypogonadal mice

    Get PDF
    <b>Background</b>: Testicular microliths are calcifications found within the seminiferous tubules. In humans, testicular microlithiasis (TM) has an unknown etiology but may be significantly associated with testicular germ cell tumors. Factors inducing microlith development may also, therefore, act as susceptibility factors for malignant testicular conditions. Studies to identify the mechanisms of microlith development have been hampered by the lack of suitable animal models for TM.<BR/> <b>Methods</b>: This was an observational study of the testicular phenotype of different mouse models. The mouse models were: cryptorchid mice, mice lacking androgen receptors (ARs) on the Sertoli cells (SCARKO), mice with a ubiquitous loss of androgen ARs (ARKO), hypogonadal (hpg) mice which lack circulating gonadotrophins, and hpg mice crossed with SCARKO (hpg.SCARKO) and ARKO (hpg.ARKO) mice.<BR/> <b>Results</b>: Microscopic TM was seen in 94% of hpg.ARKO mice (n=16) and the mean number of microliths per testis was 81 +/- 54. Occasional small microliths were seen in 36% (n=11) of hpg testes (mean 2 +/- 0.5 per testis) and 30% (n=10) of hpg.SCARKO testes (mean 8 +/- 6 per testis). No microliths were seen in cryptorchid, ARKO or SCARKO mice. There was no significant effect of FSH or androgen on TM in hpg.ARKO mice.<BR/> <b>Conclusions</b>: We have identified a mouse model of TM and show that lack of endocrine stimulation is a cause of TM. Importantly, this model will provide a means with which to identify the mechanisms of TM development and the underlying changes in protein and gene expression

    The Colocalization Potential of HIV-Specific CD8+ and CD4+ T-Cells is Mediated by Integrin β7 but Not CCR6 and Regulated by Retinoic Acid

    Get PDF
    CD4+ T-cells from gut-associated lymphoid tissues (GALT) are major targets for HIV-1 infection. Recruitment of excess effector CD8+ T-cells in the proximity of target cells is critical for the control of viral replication. Here, we investigated the colocalization potential of HIV-specific CD8+ and CD4+ T-cells into the GALT and explored the role of retinoic acid (RA) in regulating this process in a cohort of HIV-infected subjects with slow disease progression. The expression of the gut-homing molecules integrin β7, CCR6, and CXCR3 was identified as a “signature” for HIV-specific but not CMV-specific CD4+ T-cells thus providing a new explanation for their enhanced permissiveness to infection in vivo. HIV-specific CD8+ T-cells also expressed high levels of integrin β7 and CXCR3; however CCR6 was detected at superior levels on HIV-specific CD4+ versus CD8+ T-cells. All trans RA (ATRA) upregulated the expression of integrin β7 but not CCR6 on HIV-specific T-cells. Together, these results suggest that HIV-specific CD8+ T-cells may colocalize in excess with CD4+ T-cells into the GALT via integrin β7 and CXCR3, but not via CCR6. Considering our previous findings that CCR6+CD4+ T-cells are major cellular targets for HIV-DNA integration in vivo, a limited ability of CD8+ T-cells to migrate in the vicinity of CCR6+CD4+ T-cells may facilitate HIV replication and dissemination at mucosal sites

    Mechanisms of HIV-associated lymphocyte apoptosis: 2010

    Get PDF
    The inevitable decline of CD4T cells in untreated infection with the Human immunodeficiency virus (HIV) is due in large part to apoptosis, one type of programmed cell death. There is accumulating evidence that the accelerated apoptosis of CD4T cells in HIV infection is multifactorial, with direct viral cytotoxicity, signaling events triggered by viral proteins and aberrant immune activation adding to normal immune defense mechanisms to contribute to this phenomenon. Current antiviral treatment strategies generally lead to reduced apoptosis, but this approach may come at the cost of preserving latent viral reservoirs. It is the purpose of this review to provide an update on the current understanding of the role and mechanisms of accelerated apoptosis of T cells in the immunopathogenesis of HIV infection, and to highlight potential ways in which this seemingly deleterious process could be harnessed to not just control, but treat HIV infection

    Sertoli cells maintain leydig cell number and peritubular myoid cell activity in the adult mouse testis

    Get PDF
    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health

    Novel Role for p110β PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells

    Get PDF
    We thank Anna-Lena Berg (AstraZeneca, Lund) and Cheryl Scudamore (MRC, Harwell, UK) for histological analysis, Julie Foster (Barts Cancer Institute, London) for CT scans, Johan Swinnen and Frank Claessens (Leuven University, Belgium) for discussion and AR-luciferase reporter plasmids, Florian Guillou (INRA, CNRS, Université de Tours, France) for the AMH-Cre mouse line and Laura Milne (MRC Centre for Reproductive Health, The University of Edinburgh) for technical support. We thank the members of the Cell Signalling group for critical input.International audienceThe organismal roles of the ubiquitously expressed class I PI3K isoform p110β remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110β, we document that full inactivation of p110β leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110β kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110β results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110β was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110β also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110β inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110β inactivation. In line with a crucial role for p110β in SCs, selective inactivation of p110β in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110β and AR have previously been reported to functionally interac

    Depletion of the p43 Mitochondrial T3 Receptor Increases Sertoli Cell Proliferation in Mice

    Get PDF
    Among T3 receptors, TRα1 is ubiquitous and its deletion or a specific expression of a dominant-negative TRα1 isoform in Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the nuclear receptor TRα1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in Sertoli cells of p43-/- mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p43-/- probably explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43

    The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis

    No full text
    Mutation of the transcription factor and tumor suppressor gene WT1 results in a range of genitourinary anomalies in humans, including 46,XY gonadal dysgenesis, indicating that WT1 plays a critical role in sex determination. However, because knockout of Wt1 in mice results in apoptosis of the genital ridge, it is unknown whether WT1 is required for testis development after the initial steps of sex determination. To address this question, we generated a mouse strain carrying a Wt1 conditional knockout allele and ablated Wt1 function specifically in Sertoli cells by embryonic day 14.5, several days after testis determination. Wt1 knockout resulted in disruption of developing seminiferous tubules and subsequent progressive loss of Sertoli cells and germ cells such that postnatal mutant testes were almost completely devoid of these cell types and were severely hypoplastic. Thus, Wt1 is essential for the maintenance of Sertoli cells and seminiferous tubules in the developing testes. Of particular note, expression of the testis-determining gene Sox9 in mutant Sertoli cells was turned off at embryonic day 14.5 after Wt1 ablation, suggesting that WT1 regulates Sox9, either directly or indirectly, after Sry expression ceases. Our data, along with previous work demonstrating the role of Wt1 at early stages of gonadal development, thus indicate that Wt1 is essential at multiple steps in testicular development
    corecore