207 research outputs found

    Visualization of a mammalian mitochondrion by coherent x-ray diffractive imaging

    Get PDF
    We report a three dimensional (3D) quantitative visualization of a mammalian mitochondrion by coherent x-ray diffractive imaging (CXDI) using synchrotron radiation. The internal structures of a mitochondrion from a mouse embryonic fibroblast cell line (NIH3T3) were visualized by tomographic imaging at approximately 60 nm resolution without the need for sectioning or staining. The overall structure consisted of a high electron density region, composed of the outer and inner membranes and the cristae cluster, which enclosed the lower density mitochondrial matrix. The average mass density of the mitochondrion was about 1.36 g/cm3. Sectioned images of the cristae reveal that they have neither a baffle nor septa shape but were instead irregular. In addition, a high resolution, about 14 nm, 2D projection image was captured of a similar mitochondrion with the aid of strongly scattering Au reference objects. Obtaining 3D images at this improved resolution will allow CXDI to be an effective and nondestructive method for investigating the innate structure of mitochondria and other important life supporting organelles. ? 2017 The Author(s).11Ysciescopu

    The Nature of Ultra-Luminous Compact X-Ray Sources in Nearby Spiral Galaxies

    Get PDF
    Studies were made of ASCA spectra of seven ultra-luminous compact X-ray sources (ULXs) in nearby spiral galaxies; M33 X-8 (Takano et al. 1994), M81 X-6 (Fabbiano 1988b; Kohmura et al. 1994; Uno 1997), IC 342 Source 1 (Okada et al. 1998), Dwingeloo 1 X-1 (Reynolds et al. 1997), NGC 1313 Source B (Fabbiano & Trinchieri 1987; Petre et al. 1994), and two sources in NGC 4565 (Mizuno et al. 1999). With the 0.5--10 keV luminosities in the range 10^{39-40} ergs/s, they are thought to represent a class of enigmatic X-ray sources often found in spiral galaxies. For some of them, the ASCA data are newly processed, or the published spectra are reanalyzed. For others, the published results are quoted. The ASCA spectra of all these seven sources have been described successfully with so called multi-color disk blackbody (MCD) emission arising from optically-thick standard accretion disks around black holes. Except the case of M33 X-8, the spectra do not exhibit hard tails. For the source luminosities not to exceed the Eddington limits, the black holes are inferred to have rather high masses, up to ~100 solar masses. However, the observed innermost disk temperatures of these objects, Tin = 1.1--1.8 keV, are too high to be compatible with the required high black-hole masses, as long as the standard accretion disks around Schwarzschild black holes are assumed. Similarly high disk temperatures are also observed from two Galactic transients with superluminal motions, GRO 1655-40 and GRS 1915+105. The issue of unusually high disk temperature may be explained by the black hole rotation, which makes the disk get closer to the black hole, and hence hotter.Comment: submitted to ApJ, December 199

    Suzaku Observation of AXP 1E 1841-045 in SNR Kes 73

    Full text link
    Anomalous X-ray pulsars (AXPs) are thought to be magnetars, which are neutron stars with ultra strong magnetic field of 101410^{14}-- 101510^{15} G. Their energy spectra below ∌\sim10 keV are modeled well by two components consisting of a blackbody (BB) (∌\sim0.4 keV) and rather steep power-law (POW) function (photon index ∌\sim2-4). Kuiper et al.(2004) discovered hard X-ray component above ∌\sim10 keV from some AXPs. Here, we present the Suzaku observation of the AXP 1E 1841-045 at the center of supernova remnant Kes 73. By this observation, we could analyze the spectrum from 0.4 to 50 keV at the same time. Then, we could test whether the spectral model above was valid or not in this wide energy range. We found that there were residual in the spectral fits when fit by the model of BB + POW. Fits were improved by adding another BB or POW component. But the meaning of each component became ambiguous in the phase-resolved spectroscopy. Alternatively we found that NPEX model fit well for both phase-averaged spectrum and phase-resolved spectra. In this case, the photon indices were constant during all phase, and spectral variation seemed to be very clear. This fact suggests somewhat fundamental meaning for the emission from magnetars.Comment: To appear in the proceedings of the "40 Years of Pulsars: Millisecond Pulsars, Magnetars and More" conference, held 12-17 August 2007, in Montreal QC (AIP, in press, eds: C. Bassa, Z. Wang, A. Cumming, V. Kaspi

    Optical Spectroscopy of Supernova 1993J During Its First 2500 Days

    Get PDF
    We present 42 low-resolution spectra of Supernova (SN) 1993J, our complete collection from the Lick and Keck Observatories, from day 3 after explosion to day 2454, as well as one Keck high-dispersion spectrum from day 383. SN 1993J began as an apparent SN II, albeit an unusual one. After a few weeks, a dramatic transition took place, as prominent helium lines emerged in the spectrum. SN 1993J had metamorphosed from a SN II to a SN IIb. Nebular spectra of SN 1993J closely resemble those of SNe Ib and Ic, but with a persistent H_alpha line. At very late times, the H_alpha emission line dominated the spectrum, but with an unusual, box-like profile. This is interpreted as an indication of circumstellar interaction.Comment: 19 pages plus 13 figures, AASTeX V5.0. One external table in AASTeX V4.0, in landscape format. Accepted for publication in A

    BeppoSAX Observations of GRB980425: Detection of the Prompt Event and Monitoring of the Error Box

    Get PDF
    We present BeppoSAX follow-up observations of GRB980425 obtained with the Narrow Field Instruments (NFI) in April, May, and November 1998. The first NFI observation has detected within the 8' radius error box of the GRB an X-ray source positionally consistent with the supernova 1998bw, which exploded within a day of GRB980425, and a fainter X-ray source, not consistent with the position of the supernova. The former source is detected in the following NFI pointings and exhibits a decline of a factor of two in six months. If it is associated with SN 1998bw, this is the first detection of X-ray emission from a Type I supernova above 2 keV. The latter source exhibits only marginally significant variability. The X-ray spectra and variability of the supernova are compared with thermal and non-thermal models of supernova high energy emission. Based on the BeppoSAX data, it is not possible to firmly establish which of the two detected sources is the GRB X-ray counterpart, although probability considerations favor the supernova.Comment: 16 pages, Latex, 6 PostScript figures and 1 GIF figure, 2 tables, submitted to The Astrophysical Journa

    X-ray emission from radiative shocks in Type II supernovae

    Full text link
    The X-ray emission from the circumstellar interaction in Type II supernovae with a dense circumstellar medium is calculated. In Type IIL and Type IIn supernovae mass loss rates are generally high enough for the region behind the reverse shock to be radiative, producing strong radiation, particularly in X-rays. We present a model for the emission from the cooling region in the case of a radiative reverse shock. Under the assumption of a stationary flow, a hydrodynamic model is combined with time dependent ionization balance and multilevel calculations. The applicability of the steady state approximation is discussed for various values of the ejecta density gradient and different sets of chemical composition. We show how the emerging spectrum depends strongly on the reverse shock velocity and the composition of the shocked gas. We discuss differences between a spectrum produced by this model and a single-temperature spectrum. Large differences for especially the line emission are found, which seriously can affect abundance estimates. We also illustrate the effects of absorption in the cool shocked ejecta. The applicability of our model for various types of supernovae is discussed.Comment: 25 pages, 15 figures, 4 tables. Accepted for publication in A&

    A Decade of SN1993J: Discovery of Wavelength Effects in the Expansion Rate

    Get PDF
    We have studied the growth of the shell-like radio structure of supernova SN1993J in M81 from September 1993 through October 2003 with very-long-baseline interferometry (VLBI) observations at the wavelengths of 3.6, 6, and 18cm. For this purpose, we have developed a method to accurately determine the outer radius (R) of any circularly symmetric compact radio structure like SN1993J. The source structure of SN1993J remains circularly symmetric (with deviations from circularity under 2%) over almost 4000 days. We characterize the decelerated expansion of SN 1993J through approximately day 1500 after explosion with an expansion parameter m=0.845±0.005m= 0.845\pm0.005 (R∝tmR \propto t^{m}). However, from that day onwards the expansion is different when observed at 6 and 18cm. Indeed, at 18cm, the expansion can be well characterized by the same mm as before day 1500, while at 6cm the expansion appears more decelerated, and is characterized by another expansion parameter, m6=0.788±0.015m_{6}= 0.788\pm0.015. Therefore, since about day 1500 on, the radio source size has been progressively smaller at 6cm than at 18cm. These findings are in stark contrast to previous reports by other authors on the details of the expansion. In our interpretation the supernova expands with a single expansion parameter, m=0.845±0.005m= 0.845\pm0.005, and the 6cm results beyond day 1500 are due to physical effects, perhaps also coupled to instrumental limitations. Two physical effects may be involved: (a) a changing opacity of the ejecta to the 6cm radiation, and (b) a radial decrease of the magnetic field in the emitting region. (Long abstract cut. Please, read full abstract in manuscript).Comment: 21 pages, 19 figures, accepted in A&
    • 

    corecore