38 research outputs found

    Tailoring block copolymer nanoporous thin films with acetic acid as a small guest molecule

    Get PDF
    Block copolymers offer the fabrication of mesoporous thin films with distinct nanoscale structural features. In this contribution, we present the use of acetic acid (CH3COOH) as a low‐molecular‐weight guest molecule to tune the supramolecular assembly of poly[styrene‐block‐(4‐vinylpyridine)] (PS‐b‐P4VP), offering a versatile and straightforward method to obtain tailored nanostructured films with controlled topography and pore size. Spin‐coating toluene solutions of PS‐b‐P4VP, with a variable amount of CH3COOH, leads to micellar thin films, where the micelles contain the carboxylic acid as a guest molecule. The size can be conveniently modified in these films (from 48 to 75 nm) by varying the amount of organic acid in the starting solutions. Subsequent surface reconstruction of micellar films using ethanol leads to ring‐shaped copolymer nanoporous films with modulated diameter. Controlling the micelle reconstruction process, cylindrical porous films are also obtained. Interestingly, changing the type of aliphatic carboxylic acid leads to a modification of the observed film morphology from micelles to out‐of‐plane P4VP cylinders (or lamellae) in a PS matrix

    Aggregation and phase equilibria of fluorinated ionic liquids

    Get PDF
    Grant SFRH/BD/100563/2014. IF/00190/2014 . IF/00210/2014. PTDC/EQU-EQU/29737/2017. PTDC/QEQ-FTT/3289/2014. IF/00210/2014/CP1244/CT0003. UID/QUI/50006/2019. POCI-01-0145-FEDER - 007265.In this work a specific family of ionic liquids, denominated fluorinated ionic liquids, with fluorine tags equal or longer than four carbon atoms, are fully characterized in order to understand their solubility and self-aggregation in aqueous solutions. The numerous combinations between cations and anions make these compounds a feasible option for the replacement of traditional and toxic surfactants used in the industrial and biomedical field. In this work, the increment of both hydrogenated and fluorinated side chain lengths, the influence of the cation headgroup (imidazolium and cholinium)as well as the difference between perfluorobutanesulfonate and perfluoropentanoate anions were studied. The liquid-liquid phase equilibria of fluorinated ionic liquids based on the perfluorobutanesulfonate anion with water were carried out. The self-aggregation behaviour of the different fluorinated ionic liquids in aqueous solutions was also determined using conductimetric titration, surface tension measurements and transmission electron microscopy. Several thermodynamic and surface parameters were obtained and used to discuss the aggregation process. These novel characterized fluorinated ionic liquids demonstrate an improved surface activity and aggregation behaviour, driven essentially by the increment of both hydrogenated and fluorinated chain lengths.authorsversionpublishe

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    Purpose: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. Methods: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015. Patients were stratified into three age groups:<65 years, 65 to 80 years, and = 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. Results: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 = 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients =80 years who underwent surgery were significantly lower compared with other age groups (14.3%, 65 years; 20.5%, 65-79 years; 31.3%, =80 years). In-hospital mortality was lower in the <65-year group (20.3%, <65 years;30.1%, 65-79 years;34.7%, =80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%, =80 years; p = 0.003).Independent predictors of mortality were age = 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI = 3 (HR:1.62; 95% CI:1.39–1.88), and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared, the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. Conclusion: There were no differences in the clinical presentation of IE between the groups. Age = 80 years, high comorbidity (measured by CCI), and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    Combined Gelatin-Chondroitin Sulfate Hydrogels with graphene nanoparticles

    No full text
    10 pages, 5 figures, 3 tablesCreating flexible, high-strength hydrogels from harmless, low-cost natural polymers is an area of intense research today due to their potential applications in the biomedical field, which demands materials with ambivalent physicochemical features. In particular, great efforts were devoted to the preparation of sustainable biohydrogels, composed of hydrophilic networks of renewable, biocompatible, biodegradable, and low-cost biopolymers. Bionanocomposites are a promising synthetic approach to combine specific multifunctional materials with targeted physicochemical properties. Novel bionanocomposite hydrogels were designed by combining both chondroitin sulfate (CS) as well as gelatin (GE) obtained from the waste generated by the fish industries to form double fibre networks with tailored properties. In addition, hybrid bionanocomposites were achieved by introducing graphene nanoparticles (xGnP) into the double fibrillar network (GE/CS) to enhance the physicochemical properties. The bionanocomposite nanostructures were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC) while their rheological properties and thermal stability were determined by rheological and thermogravimetric analyses (TGA), respectively. The likely interactions between CS and gelatin in the GE/CS hydrogel network were proved by ATR-FTIR spectroscopy. The incorporation of xGnP improved the mechanical properties of the GE/CS fibrillary network by an order of magnitude in the shear storage modulus. Eventually, the generated bionanocomposites hydrogels and bionanocomposite hybrid hydrogels have promising potential for applications in many biomedical fields, including drug delivery and tissue engineering by mimicking tissue extracellular matrix components such as the gelatin for collagen and the CS in the cartilageThe authors acknowledge the financial support received from Project KET4F-Gas-SOE2/P1/P0823, which is co-financed by the European Regional Development Fund within the framework of Interreg Sudoe Programme and project PID2019-105827RB-I00–Agencia Estatal de Investigación, SpainPeer reviewe
    corecore