217 research outputs found

    Three-component modeling of C-rich AGB star winds I. Method and first results

    Get PDF
    Radiative acceleration of newly-formed dust grains and transfer of momentum from the dust to the gas plays an important role for driving winds of AGB stars. Therefore a detailed description of the interaction of gas and dust is a prerequisite for realistic models of such winds. In this paper we present the method and first results of a three-component time-dependent model of dust-driven AGB star winds. With the model we plan to study the role and effects of the gas-dust interaction on the mass loss and wind formation. The wind model includes separate conservation laws for each of the three components of gas, dust and the radiation field and is developed from an existing model which assumes position coupling between the gas and the dust. As a new feature we introduce a separate equation of motion for the dust component in order to fully separate the dust phase from the gas phase. The transfer of mass, energy and momentum between the phases is treated by interaction terms. We also carry out a detailed study of the physical form and influence of the momentum transfer term (the drag force) and three approximations to it. In the present study we are interested mainly in the effect of the new treatment of the dust velocity on dust-induced instabilities in the wind. As we want to study the consequences of the additional freedom of the dust velocity on the model we calculate winds both with and without the separate dust equation of motion. The wind models are calculated for several sets of stellar parameters. We find that there is a higher threshold in the carbon/oxygen abundance ratio at which winds form in the new model. The winds of the new models, which include drift, differ from the previously stationary winds, and the winds with the lowest mass loss rates no longer form.Comment: 15 pages, 5 figures, accepted by A&

    Tomography of silicate dust around M-type AGB stars I. Diagnostics based on dynamical models

    Full text link
    The heavy mass loss observed in evolved asymptotic giant branch stars is usually attributed to a two-step process: atmospheric levitation by pulsation-induced shock waves, followed by radiative acceleration of newly formed dust grains. Detailed wind models suggest that the outflows of M-type AGB stars may be triggered by photon scattering on Fe-free silicates with grain sizes of about 0.1 - 1 μ\mum. Due to the low grain temperature, these Fe-free silicates can condense close to the star, but they do not produce the characteristic mid-IR features that are often observed in M-type AGB stars. However, it is probable that the silicate grains are gradually enriched with Fe as they move away from the star, to a degree where the grain temperature stays below the sublimation temperature, but is high enough to produce emission features. We investigate whether differences in grain temperature in the inner wind region, which are related to changes in the grain composition, can be detected with current interferometric techniques, in order to put constraints on the wind mechanism. To investigate this we use radial structures of the atmosphere and wind of an M-type AGB star, produced with the 1D radiation-hydrodynamical code DARWIN. The spectral energy distribution is found to be a poor indicator of different temperature profiles and therefore is not a good tool for distinguishing different scenarios of changing grain composition. However, spatially resolved interferometric observations have promising potential. They show signatures even for Fe-free silicates (found at 2-3 stellar radii), in contrast to the spectral energy distribution. Observations with baselines that probe spatial scales of about 4 stellar radii and beyond are suitable for tracing changes in grain composition, since this is where effects of Fe enrichment should be found.Comment: Accepted for publication in Section 8. Stellar atmospheres of Astronomy and Astrophysics. The official date of acceptance is 07/09/2017. 9 pages, 7 figures, 4 figures in appendi

    Winds of M- and S-type AGB stars: an unorthodox suggestion for the driving mechanism

    Get PDF
    Current knowledge suggests that the dust-driven wind scenario provides a realistic framework for understanding mass loss from C-rich AGB stars. For M-type objects, however, recent detailed models demonstrate that radiation pressure on silicate grains is not sufficient to drive the observed winds, contrary to previous expectations. In this paper, we suggest an alternative mechanism for the mass-loss of M-type AGB stars, involving the formation of both carbon and silicate grains due to non-equilibrium effects, and we study the viability of this scenario. We model the dynamical atmospheres and winds of AGB stars by solving the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation, using a parameterized description of non-equilibrium effects in the gas phase. This approach allows us to assess under which circumstances it is possible to drive winds with small amounts of carbon dust and to get silicate grains forming in these outflows at the same time. The properties of the resulting wind models, such as mass loss rates and outflow velocities, are well within the observed limits for M-type AGB stars. Furthermore, according to our results, it is quite unlikely that significant amounts of silicate grains will condense in a wind driven by a force totally unrelated to dust formation, as the conditions in the upper atmosphere and wind acceleration region put strong constraints on grain growth. The proposed scenario provides a natural explanation for the observed similarities in wind properties of M-type and C-type AGB stars and implies a smooth transition for stars with increasing carbon abundance, from solar-composition to C-rich AGB stars, possibly solving the long-standing problem of the driving mechanism for stars with C/O close to one

    Measuring The Mass Loss Evolution at The Tip of The Asymptotic Giant Branch

    Full text link
    In the final stages of stellar evolution low- to intermediate-mass stars lose their envelope in increasingly massive stellar winds. Such winds affect the interstellar medium and the galactic chemical evolution as well as the circumstellar envelope where planetary nebulae form subsequently. Characteristics of this mass loss depend on both stellar properties and properties of gas and dust in the wind formation region. In this paper we present an approach towards studies of mass loss using both observations and models, focusing on the stage where the stellar envelope is nearly empty of mass. In a recent study we measure the mass-loss evolution, and other properties, of four planetary nebulae in the Galactic Disk. Specifically we use the method of integral field spectroscopy on faint halos, which are found outside the much brighter central parts of a planetary nebula. We begin with a brief comparison between our and other observational methods to determine mass-loss rates in order to illustrate how they differ and complement each other. An advantage of our method is that it measures the gas component directly requiring no assumptions of properties of dust in the wind. Thereafter we present our observational approach in more detail in terms of its validity and its assumptions. In the second part of this paper we discuss capabilities and assumptions of current models of stellar winds. We propose and discuss improvements to such models that will allow meaningful comparisons with our observations. Currently the physically most complete models include too little mass in the model domain to permit a formation of winds with as high mass-loss rates as our observations show.Comment: 7 pages, workshop in honour of Agnes Acker, Legacies of the Macquarie/AAO/Strasbourg Halpha Planetary Nebula project, ed. Q.Parker and D.Frew, PASA, in press; clarified some parts and added some additional reference

    Observing and modeling the dynamic atmosphere of the low mass-loss C-star R Sculptoris at high angular resolution

    Full text link
    We study the circumstellar environment of the carbon-rich star R Scl using the near- and mid-infrared high spatial resolution observations from the ESO-VLTI instruments VINCI and MIDI. These observations aim at increasing our knowledge of the dynamic processes in play within the very close circumstellar environment where the mass loss of AGB stars is initiated. Data are interpreted using a self-consistent dynamic model. Interferometric observations do not show any significant variability effect at the 16 m baseline between phases 0.17 and 0.23 in the K band, and for both the 15 m baseline between phases 0.66 and 0.97 and the 31 m baseline between phases 0.90 and 0.97 in the N band. We find fairly good agreement between the dynamic model and the spectrophotometric data from 0.4 to 25 μ\mum. The model agrees well with the time-dependent flux data at 8.5 μ\mum, whereas it is too faint at 11.3 and 12.5 μ\mum. The VINCI visibilities are reproduced well, meaning that the extension of the model is suitable in the K-band. In the mid-infrared, the model has the proper extension to reveal molecular structures of C2H2 and HCN located above the stellar photosphere. However, the windless model used is not able to reproduce the more extended and dense dusty environment. Among the different explanations for the discrepancy between the model and the measurements, the strong nonequilibrium process of dust formation is one of the most probable. The complete dynamic coupling of gas and dust and the approximation of grain opacities with the small-particle limit in the dynamic calculation could also contribute to the difference between the model and the data

    Dust formation in winds of long-period variables. V. The influence of micro-physical dust properties in carbon stars

    Get PDF
    We present self-consistent dynamical models for dust-driven winds of carbon-rich AGB stars. The models are based on the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation. We investigate in detail how the wind properties of the models are influenced by the micro-physical properties of the dust grains that are required by the description of grain formation. The choice of dust parameters is significant for the derived outflow velocity, the degree of condensation and the resulting mass loss rates of the models. In the transition region between models with and without mass loss the choice ofmicro-physical parameters turns out to be very significant for whether a particular set of stellar parameters will give rise to a dust-driven mass loss or not. We also calculate near-infrared colors to test how the dust parameters influence the observable properties of the models, however, at this point we do not attempt to fit particular stars.Comment: 13 pages, 8 figures, A&A in pres

    Synthesis and biological evaluation of α- and β-hydroxy substituted amino acid derivatives as potential mGAT1-4 inhibitors

    Get PDF
    <jats:title>Abstract</jats:title><jats:p>In this study, we report the synthesis and biological evaluation of a variety of α- and β-hydroxy substituted amino acid derivatives as potential amino acid subunits in inhibitors of GABA uptake transporters (GATs). In order to ensure that the test compounds adopt a binding pose similar to that presumed for related larger GAT inhibitors, lipophilic residues were introduced either at the amino nitrogen atom or at the alcohol function. Several of the synthesized compounds were found to exhibit similar inhibitory activity at the GAT subtypes mGAT2, mGAT3, and mGAT4, respectively, as compared with the reference N-butylnipecotic acid. Hence, these compounds might serve as starting point for future developments of more complex GAT inhibitors.</jats:p&gt

    The mid-infrared diameter of W Hydrae

    Full text link
    Mid-infrared (8-13 microns) interferometric data of W Hya were obtained with MIDI/VLTI between April 2007 and September 2009, covering nearly three pulsation cycles. The spectrally dispersed visibility data of all 75 observations were analyzed by fitting a circular fully limb-darkened disk (FDD) model to all data and individual pulsation phases. Asymmetries were studied with an elliptical FDD. Modeling results in an apparent angular FDD diameter of W Hya of about (80 +/- 1.2) mas (7.8 AU) between 8 and 10 microns, which corresponds to an about 1.9 times larger diameter than the photospheric one. The diameter gradually increases up to (105 +/- 1.2) mas (10.3 AU) at 12 microns. In contrast, the FDD relative flux fraction decreases from (0.85 +/- 0.02) to (0.77 +/- 0.02), reflecting the increased flux contribution from a fully resolved surrounding silicate dust shell. The asymmetric character of the extended structure could be confirmed. An elliptical FDD yields a position angle of (11 +/- 20) deg and an axis ratio of (0.87 +/- 0.07). A weak pulsation dependency is revealed with a diameter increase of (5.4 +/- 1.8) mas between visual minimum and maximum, while detected cycle-to-cycle variations are smaller. W Hya's diameter shows a behavior that is very similar to the Mira stars RR Sco and S Ori and can be described by an analogous model. The constant diameter part results from a partially resolved stellar disk, including a close molecular layer of H2O, while the increase beyond 10 microns can most likely be attributed to the contribution of a spatially resolved nearby Al2O3 dust shell.Comment: 18 pages, 16 figure

    Evidence for mass ejection associated with long secondary periods in red giants

    Full text link
    Approximately 30% of luminous red giants exhibit a Long Secondary Period (LSP) of variation in their light curves, in addition to a shorter primary period of oscillation. The cause of the LSP has so far defied explanation: leading possibilities are binarity and a nonradial mode of oscillation. Here, large samples of red giants in the Large Magellanic Cloud both with and without LSPs are examined for evidence of an 8 or 24 μ\mum mid-IR excess caused by circumstellar dust. It is found that stars with LSPs show a significant mid-IR excess compared to stars without LSPs. Furthermore, the near-IR JJ-KK color seems unaffected by the presence of the 24 μ\mum excess. These findings indicate that LSPs cause mass ejection from red giants and that the lost mass and circumstellar dust is most likely in either a clumpy or a disk-like configuration. The underlying cause of the LSP and the mass ejection remains unknown.Comment: 6 pages, accepted for publication in Ap

    Interferometric properties of pulsating C-rich AGB stars I. Intensity profiles and uniform disc diameters of dynamic model atmospheres

    Full text link
    We present the first theoretical study on center-to-limb variation (CLV) properties and relative radius interpretation for narrow and broad-band filters, on the basis of a set of dynamic model atmospheres of C-rich AGB stars. We computed visibility profiles and the equivalent uniform disc radii (UD-radii) in order to investigate the dependence of these quantities upon the wavelength and pulsation phase. After an accurate morphological analysis of the visibility and intensity profiles determined in narrow and broad-band filter, we fitted our visibility profiles with a UD function simulating the observational approach. UD-radii have been computed using three different fitting-methods to investigate the influence of the sampling of the visibility profile: single point, two points and least square method. The intensity and visibility profiles of models characterized by mass loss show a behaviour very different from a UD. We found that UD-radii are wavelength dependent and this dependence is stronger if mass loss is present. Strong opacity contributions from C2H2 affect all radius measurements at 3 micron and in the N-band, resulting in higher values for the UD-radii. The predicted behaviour of UD-radii versus phase is complicated in the case of models with mass loss, while the radial changes are almost sinusoidal for the models without mass loss. Compared to the M-type stars, for the C-stars no windows for measuring the pure continuum are available.Comment: 13 pages, 9 figures, accepted for publication in A&
    corecore