Mid-infrared (8-13 microns) interferometric data of W Hya were obtained with
MIDI/VLTI between April 2007 and September 2009, covering nearly three
pulsation cycles. The spectrally dispersed visibility data of all 75
observations were analyzed by fitting a circular fully limb-darkened disk (FDD)
model to all data and individual pulsation phases. Asymmetries were studied
with an elliptical FDD. Modeling results in an apparent angular FDD diameter of
W Hya of about (80 +/- 1.2) mas (7.8 AU) between 8 and 10 microns, which
corresponds to an about 1.9 times larger diameter than the photospheric one.
The diameter gradually increases up to (105 +/- 1.2) mas (10.3 AU) at 12
microns. In contrast, the FDD relative flux fraction decreases from (0.85 +/-
0.02) to (0.77 +/- 0.02), reflecting the increased flux contribution from a
fully resolved surrounding silicate dust shell. The asymmetric character of the
extended structure could be confirmed. An elliptical FDD yields a position
angle of (11 +/- 20) deg and an axis ratio of (0.87 +/- 0.07). A weak pulsation
dependency is revealed with a diameter increase of (5.4 +/- 1.8) mas between
visual minimum and maximum, while detected cycle-to-cycle variations are
smaller. W Hya's diameter shows a behavior that is very similar to the Mira
stars RR Sco and S Ori and can be described by an analogous model. The constant
diameter part results from a partially resolved stellar disk, including a close
molecular layer of H2O, while the increase beyond 10 microns can most likely be
attributed to the contribution of a spatially resolved nearby Al2O3 dust shell.Comment: 18 pages, 16 figure