96 research outputs found

    Dynamics of Fluid Fuel Reactors in the Presence of Periodic Perturbations

    Get PDF
    The appearance of perturbations characterized by a periodic time behavior in fluid fuel reactors is connected to the possible precipitation of fissile compounds which are moved within the primary circuit by the fuel motion. In this paper the time-dependent response of a critical fluid fuel system to periodic perturbations is analyzed, solving the full neutronic model and comparing the results with approximate methods, such as point kinetics. A fundamental eigenvalue of the problem is defined, characterizing the trend of divergence of the power. Parametric studies on the reactivity insertion, the fuel velocity and the recirculation time are performed, evidencing the sensitivity of the eigenvalue on typical design parameters. Non-linear calculations in the presence of a negative feedback term are then performed, in order to assess the possibility to control a fluid fuel system when periodic reactivity perturbations are involved

    Nuclear data uncertainty quantification on PWR spent nuclear fuel as a function of burnup

    Get PDF
    Nuclear data uncertainty analysis on the spent nuclear fuel inventory was performed on the Takahama-3 NT3G23 assembly, where the sample SF95-4 was irradiated up to a burnup of approximately 36 GWd/ t according to the SFCOMPO benchmark. The cross-section covariance matrices stored in the ENDF/B-VIII.0, JEFF-3.3 and JENDL-4.0u evaluated nuclear data libraries were propagated with the stochastic sampling algorithms implemented in the SANDY code. A comparison of the concentration uncertainty differences obtained using data from the three libraries is reported. Similarities were found with the fuel composition uncertainty results obtained for the Calvert Cliffs MKP109 sample P SFCOMPO benchmark. Such a similarity was also found when comparing concentration uncertainties along the sample irradiation. Therefore, the main contributors to the concentration uncertainty of a number of nuclides were identified at different burnup levels in the two samples. To complement the similarity analysis, a correlation study of the concentration distributions predicted by the two models was performed. The reported results hint a dominance of the common uncertainty propagation mechanisms over the model differences in the determination of concentration uncertainty

    Engineering Genetically Encoded Nanosensors for Real-Time In Vivo Measurements of Citrate Concentrations

    Get PDF
    Citrate is an intermediate in catabolic as well as biosynthetic pathways and is an important regulatory molecule in the control of glycolysis and lipid metabolism. Mass spectrometric and NMR based metabolomics allow measuring citrate concentrations, but only with limited spatial and temporal resolution. Methods are so far lacking to monitor citrate levels in real-time in-vivo. Here, we present a series of genetically encoded citrate sensors based on FΓΆrster resonance energy transfer (FRET). We screened databases for citrate-binding proteins and tested three candidates in vitro. The citrate binding domain of the Klebsiella pneumoniae histidine sensor kinase CitA, inserted between the FRET pair Venus/CFP, yielded a sensor highly specific for citrate. We optimized the peptide linkers to achieve maximal FRET change upon citrate binding. By modifying residues in the citrate binding pocket, we were able to construct seven sensors with different affinities spanning a concentration range of three orders of magnitude without losing specificity. In a first in vivo application we show that E. coli maintains the capacity to take up glucose or acetate within seconds even after long-term starvation

    The Influence of Moderate Hypercapnia on Neural Activity in the Anesthetized Nonhuman Primate

    Get PDF
    Hypercapnia is often used as vasodilatory challenge in clinical applications and basic research. In functional magnetic resonance imaging (fMRI), elevated CO2 is applied to derive stimulus-induced changes in the cerebral rate of oxygen consumption (CMRO2) by measuring cerebral blood flow and blood-oxygenation-level–dependent (BOLD) signal. Such methods, however, assume that hypercapnia has no direct effect on CMRO2. In this study, we used combined intracortical recordings and fMRI in the visual cortex of anesthetized macaque monkeys to show that spontaneous neuronal activity is in fact significantly reduced by moderate hypercapnia. As expected, measurement of cerebral blood volume using an exogenous contrast agent and of BOLD signal showed that both are increased during hypercapnia. In contrast to this, spontaneous fluctuations of local field potentials in the beta and gamma frequency range as well as multiunit activity are reduced by ∼15% during inhalation of 6% CO2 (pCO2 = 56 mmHg). A strong tendency toward a reduction of neuronal activity was also found at CO2 inhalation of 3% (pCO2 = 45 mmHg). This suggests that CMRO2 might be reduced during hypercapnia and caution must be exercised when hypercapnia is applied to calibrate the BOLD signal

    Surface Hardness Impairment of Quorum Sensing and Swarming for Pseudomonas aeruginosa

    Get PDF
    The importance of rhamnolipid to swarming of the bacterium Pseudomonas aeruginosa is well established. It is frequently, but not exclusively, observed that P. aeruginosa swarms in tendril patternsβ€”formation of these tendrils requires rhamnolipid. We were interested to explain the impact of surface changes on P. aeruginosa swarm tendril development. Here we report that P. aeruginosa quorum sensing and rhamnolipid production is impaired when growing on harder semi-solid surfaces. P. aeruginosa wild-type swarms showed huge variation in tendril formation with small deviations to the β€œstandard” swarm agar concentration of 0.5%. These macroscopic differences correlated with microscopic investigation of cells close to the advancing swarm edge using fluorescent gene reporters. Tendril swarms showed significant rhlA-gfp reporter expression right up to the advancing edge of swarming cells while swarms without tendrils (grown on harder agar) showed no rhlA-gfp reporter expression near the advancing edge. This difference in rhamnolipid gene expression can be explained by the necessity of quorum sensing for rhamnolipid production. We provide evidence that harder surfaces seem to limit induction of quorum sensing genes near the advancing swarm edge and these localized effects were sufficient to explain the lack of tendril formation on hard agar. We were unable to artificially stimulate rhamnolipid tendril formation with added acyl-homoserine lactone signals or increasing the carbon nutrients. This suggests that quorum sensing on surfaces is controlled in a manner that is not solely population dependent

    Voronoi Tessellation Captures Very Early Clustering of Single Primary Cells as Induced by Interactions in Nascent Biofilms

    Get PDF
    Biofilms dominate microbial life in numerous aquatic ecosystems, and in engineered and medical systems, as well. The formation of biofilms is initiated by single primary cells colonizing surfaces from the bulk liquid. The next steps from primary cells towards the first cell clusters as the initial step of biofilm formation remain relatively poorly studied. Clonal growth and random migration of primary cells are traditionally considered as the dominant processes leading to organized microcolonies in laboratory grown monocultures. Using Voronoi tessellation, we show that the spatial distribution of primary cells colonizing initially sterile surfaces from natural streamwater community deviates from uniform randomness already during the very early colonisation. The deviation from uniform randomness increased with colonisation β€” despite the absence of cell reproduction β€” and was even more pronounced when the flow of water above biofilms was multidirectional and shear stress elevated. We propose a simple mechanistic model that captures interactions, such as cell-to-cell signalling or chemical surface conditioning, to simulate the observed distribution patterns. Model predictions match empirical observations reasonably well, highlighting the role of biotic interactions even already during very early biofilm formation despite few and distant cells. The transition from single primary cells to clustering accelerated by biotic interactions rather than by reproduction may be particularly advantageous in harsh environments β€” the rule rather than the exception outside the laboratory

    ATP signalling in epilepsy

    Get PDF
    This paper focuses on a role for ATP neurotransmission and gliotransmission in the pathophysiology of epileptic seizures. ATP along with gap junctions propagates the glial calcium wave, which is an extraneuronal signalling pathway in the central nervous system. Recently astrocyte intercellular calcium waves have been shown to underlie seizures, and conventional antiepileptic drugs have been shown to attenuate these calcium waves. Blocking ATP-mediated gliotransmission, therefore, represents a potential target for antiepileptic drugs. Furthermore, while knowledge of an antiepileptic role for adenosine is not new, a recent study showed that adenosine accumulates from the hydrolysis of accumulated ATP released by astrocytes and is believed to inhibit distant synapses by acting on adenosine receptors. Such a mechanism is consistent with a surround-inhibitory mechanism whose failure would predispose to seizures. Other potential roles for ATP signalling in the initiation and spread of epileptiform discharges may involve synaptic plasticity and coordination of synaptic networks. We conclude by making speculations about future developments

    A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    Get PDF
    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Ξ”cdc20 mutant parasites were largely different from those observed in the Ξ”map2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis

    Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations

    Get PDF
    Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2(armc1) mutants resulted in the production of usherin Delta exon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13

    Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    Get PDF
    Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70MeV, 0.75mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility
    • …
    corecore