138 research outputs found

    A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna

    Get PDF
    A novel wideband substrate integrated waveguide (SIW) antenna topology, consisting of coupled half-mode and quarter-mode SIW resonant cavities, is proposed for operation in the 60 GHz band. This innovative topology combines a considerable bandwidth enhancement and a low form factor with compatibility with low-cost printed circuit board manufacturing processes, making it excellently suited for the next generation, high data rate wireless applications. Moreover, exploiting SIW technology, a high antenna-platform isolation is obtained, enabling dense integration with active electronics without harmful coupling. The computer-aided design process yields an antenna that covers the entire 57-64 GHz IEEE 802.11ad band with a measured fractional impedance bandwidth of 11.7% (7 GHz). The measured maximum gain and radiation efficiency of the prototype are larger than 5.1 dBi and 65%, respectively, within the entire impedance bandwidth

    Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe

    Get PDF
    Forest management requires prediction of forest growth, but there is no general agreement about which models best predict growth, how to quantify model parameters, and how to assess the uncertainty of model predictions. In this paper, we show how Bayesian calibration (BC), Bayesian model comparison (BMC) and Bayesian model averaging (BMA) can help address these issues. We used six models, ranging from simple parameter-sparse models to complex process-based models: 3PG, 4C, ANAFORE, BASFOR, BRIDGING and FORMIND. For each model, the initial degree of uncertainty about parameter values was expressed in a prior probability distribution. Inventory data for Scots pine on tree height and diameter, with estimates of measurement uncertainty, were assembled for twelve sites, from four countries: Austria, Belgium, Estonia and Finland. From each country, we used data from two sites of the National Forest Inventories (NFIs), and one Permanent Sample Plot (PSP). The models were calibrated using the NFI-data and tested against the PSP-data. Calibration was done both per country and for all countries simultaneously, thus yielding country-specific and generic parameter distributions. We assessed model performance by sampling from prior and posterior distributions and comparing the growth predictions of these samples to the observations at the PSPs. We found that BC reduced uncertainties strongly in all but the most complex model. Surprisingly, country-specific BC did not lead to clearly better within-country predictions than generic BC. BMC identified the BRIDGING model, which is of intermediate complexity, as the most plausible model before calibration, with 4C taking its place after calibration. In this BMC, model plausibility was quantified as the relative probability of a model being correct given the information in the PSP-data. We discuss how the method of model initialisation affects model performance. Finally, we show how BMA affords a robust way of predicting forest growth that accounts for both parametric and model structural uncertainty

    Diagnostic Performance of Screening Tools for Depressive Symptoms in Vulnerable Older Patients with Cancer Undergoing Comprehensive Geriatric Assessment (CGA): Results from the SCREEN Pilot Study

    Get PDF
    Depression is a common and disabling disorder in later life, particularly among people with poor physical health. There are many screening tools available that can be used to examine depressive symptoms; however, not all of them may be appropriate or accurate for older adults with cancer. This pilot study was designed to test the diagnostic performance of two screening tools and their short versions in a cohort of vulnerable (G8 score ≀ 14/17) older patients with cancer undergoing comprehensive geriatric assessment (CGA). The prospective analysis covered 50 vulnerable patients with cancer aged ≄70 years. The diagnostic performance of the Geriatric Depression Scale (GDS)-15, GDS-4, Patient Health Questionnaire (PHQ)-9 and PHQ-2 was compared to the ‘gold standard’ Structured Clinical Interview for DSM-5 Disorders (SCID-5-S) depression module A. The sensitivity and specificity in detecting depressive symptoms were the highest in the case of PHQ-2, with an area under the receiver operating characteristic curve (AUROC) of 92.7%. The AUROC for the 9-item version, PHQ-9, was 90.2%. For the GDS-15 and GDS-4, the AUROC was only 56.2% and 62.0%, respectively. The SCREEN pilot study illustrates the potential benefit of using a shorter screening tool, PHQ-2, to identify older patients with cancer who would benefit from a more in-depth emotional evaluation as part of a CGA.</jats:p

    Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon plantations are introduced in climate change policy as an option to slow the build-up of atmospheric carbon dioxide (CO<sub>2</sub>) concentrations. Here we present a methodology to evaluate the potential effectiveness of carbon plantations. The methodology explicitly considers future long-term land-use change around the world and all relevant carbon (C) fluxes, including all natural fluxes. Both issues have generally been ignored in earlier studies.</p> <p>Results</p> <p>Two different baseline scenarios up to 2100 indicate that uncertainties in future land-use change lead to a near 100% difference in estimates of carbon sequestration potentials. Moreover, social, economic and institutional barriers preventing carbon plantations in natural vegetation areas decrease the physical potential by 75–80% or more.</p> <p>Nevertheless, carbon plantations can still considerably contribute to slowing the increase in the atmospheric CO<sub>2 </sub>concentration but only in the long term. The most conservative set of assumptions lowers the increase of the atmospheric CO<sub>2 </sub>concentration in 2100 by a 27 ppm and compensates for 5–7% of the total energy-related CO<sub>2 </sub>emissions. The net sequestration up to 2020 is limited, given the short-term increased need for agricultural land in most regions and the long period needed to compensate for emissions through the establishment of the plantations. The potential is highest in the tropics, despite projections that most of the agricultural expansion will be in these regions. Plantations in high latitudes as Northern Europe and Northern Russia should only be established if the objective to sequester carbon is combined with other activities.</p> <p>Conclusion</p> <p>Carbon sequestration in plantations can play an important role in mitigating the build-up of atmospheric CO<sub>2</sub>. The actual magnitude depends on natural and management factors, social barriers, and the time frame considered. In addition, there are a number of ancillary benefits for local communities and the environment. Carbon plantations are, however, particularly effective in the long term. Furthermore, plantations do not offer the ultimate solution towards stabilizing CO<sub>2 </sub>concentrations but should be part of a broader package of options with clear energy emission reduction measures.</p

    Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference

    Get PDF
    BACKGROUND: Blood tests of liver injury are less well validated in non‐alcoholic fatty liver disease (NAFLD) than in patients with chronic viral hepatitis. AIMS: To improve the validation of three blood tests used in NAFLD patients, FibroTest for fibrosis staging, SteatoTest for steatosis grading and ActiTest for inflammation activity grading. METHODS: We pre‐included new NAFLD patients with biopsy and blood tests from a single‐centre cohort (FibroFrance) and from the multicentre FLIP consortium. Contemporaneous biopsies were blindly assessed using the new steatosis, activity and fibrosis (SAF) score, which provides a reliable and reproducible diagnosis and grading/staging of the three elementary features of NAFLD (steatosis, inflammatory activity) and fibrosis with reduced interobserver variability. We used nonbinary‐ROC (NonBinAUROC) as the main endpoint to prevent spectrum effect and multiple testing. RESULTS: A total of 600 patients with reliable tests and biopsies were included. The mean NonBinAUROCs (95% CI) of tests were all significant (P < 0.0001): 0.878 (0.864–0.892) for FibroTest and fibrosis stages, 0.846 (0.830–0.862) for ActiTest and activity grades, and 0.822 (0.804–0.840) for SteatoTest and steatosis grades. FibroTest had a higher NonBinAUROC than BARD (0.836; 0.820–0.852; P = 0.0001), FIB4 (0.845; 0.829–0.861; P = 0.007) but not significantly different than the NAFLD score (0.866; 0.850–0.882; P = 0.26). FibroTest had a significant difference in median values between adjacent stage F2 and stage F1 contrarily to BARD, FIB4 and NAFLD scores (Bonferroni test P < 0.05). CONCLUSIONS: In patients with NAFLD, SteatoTest, ActiTest and FibroTest are non‐invasive tests that offer an alternative to biopsy, and they correlate with the simple grading/staging of the SAF scoring system across the three elementary features of NAFLD: steatosis, inflammatory activity and fibrosis

    Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world

    Get PDF
    Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as ‘dryland mechanisms’. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.The support of the Israel Science Foundation is acknowledged by J.M.G. (grant number 1796/19), O.A. (1185/17) and E.M. (1053/17). M.B. acknowledges funding through the ÖAW-ESS project ClimGrassHydro (Austrian Academy of Sciences).Peer reviewe
    • 

    corecore