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2 

Abstract 1 

2 

Forest management requires prediction of forest growth, but there is no general agreement about 3 

which models best predict growth, how to quantify model parameters, and how to assess the 4 

uncertainty of model predictions. In this paper, we show how Bayesian calibration (BC), Bayesian 5 

model comparison (BMC) and Bayesian model averaging (BMA) can help address these issues. 6 

We used six models, ranging from simple parameter-sparse models to complex process-based 7 

models: 3PG, 4C, ANAFORE, BASFOR, BRIDGING and FORMIND. For each model, the initial 8 

degree of uncertainty about parameter values was expressed in a prior probability distribution. 9 

Inventory data for Scots pine on tree height and diameter, with estimates of measurement 10 

uncertainty, were assembled for twelve sites, from four countries: Austria, Belgium, Estonia and 11 

Finland. From each country, we used data from two sites of the National Forest Inventories (NFI), 12 

and one Permanent Sample Plot (PSP). The models were calibrated using the NFI-data and tested 13 

against the PSP-data. Calibration was done both per country and for all countries simultaneously, 14 

thus yielding country-specific and generic parameter distributions. We assessed model 15 

performance by sampling from prior and posterior distributions and comparing the growth 16 

predictions of these samples to the observations at the PSP‟s. 17 

We found that BC reduced uncertainties strongly in all but the most complex model. 18 

Surprisingly, country-specific BC did not lead to clearly better within-country predictions than 19 

generic BC. BMC identified the BRIDGING model, which is of intermediate complexity, as the 20 

most plausible model before calibration, with 4C taking its place after calibration. In this BMC, 21 

model plausibility was quantified as the relative probability of a model being correct given the 22 

information in the PSP-data. We discuss how the method of model initialisation affects model 23 

performance. Finally, we show how BMA affords a robust way of predicting forest growth that 24 

accounts for both parametric and model structural uncertainty. 25 

26 
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1. Introduction1 

2 

Ecological models are built for a variety of purposes. One general motivation is trying to integrate 3 

our understanding of the processes underlying natural phenomena. At a time when the earth 4 

system is subject to substantial changes in land use and climate, however, it also becomes of 5 

increasing importance to be able to make quantitative predictions, supported by a quantification of 6 

uncertainty, about the future of our ecosystems. 7 

Forest ecosystems are a prominent example where quantitative predictions are of particular 8 

ecological and economic importance, but for which there is considerable uncertainty because 9 

different modelling approaches, models and parameters are available (Mäkelä et al., 2012). We 10 

focus here on weather-sensitive dynamic models, which simulate the growth of forest stands over 11 

time. Dynamic models that have been considered for forest management range from fairly simple, 12 

parameter-sparse empirical models to complex models with many parameters (Fontes et al., 2010). 13 

None of these models has found widespread application across Europe, which may be due to 14 

problems of parameterisation and a lack of knowledge about the generalisability of the models. 15 

Given the increasing availability of forest data from National Forest Inventories (NFI) and 16 

Permanent Sample Plots (PSP), and other data sources, however, it can be hoped that limitations of 17 

dynamic forest models with respect to data availability can be substantially reduced in the future 18 

(Hartig et al., 2012). These data can help in parameterisation and evaluation of the models, if we 19 

can find robust ways of comparing models and accounting for measurement and modelling 20 

uncertainties. In this paper, we use methods based on probability theory, more specifically 21 

Bayesian calibration (BC), Bayesian model comparison (BMC) and Bayesian model averaging 22 

(BMA), to address these issues. A strength of these methods is that they can be applied to any type 23 

of model. Although we do restrict our focus here to dynamic, weather-sensitive models, we have 24 

included models of widely differing structure, complexity and data needs,  providing a broad 25 

practical test of the methods. 26 

Bayesian methods have been used before to calibrate the parameter distributions of dynamic 27 

forest models, starting with the work of Green et al. (1999), but application to parameter-rich 28 

process-based models is still rare (Luo et al., 2009). The use of BMC to compare and evaluate 29 

dynamic forest models – or any other vegetation models – is a more recent application. Van Oijen 30 

et al. (2011) included BMC in their analysis of four models for forest biogeochemistry and Fu et 31 

al. (2012) used BMC to identify the most plausible models for predicting tree budburst. Here we 32 

present, as far as we know, the first applications of BMC and BMA to dynamic forest growth 33 

models that include both parameter-sparse semi-empirical models and complex process-based 34 

models with many parameters. Using NFI- and PSP-data on Scots pine (Pinus sylvestris L.) from 35 

four European countries, we compared the results of calibration and testing of these models using 36 
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the combined dataset with the results where the same methods were applied to within-country data 1 

only. The purpose of this was to assess whether the models would be most effectively calibrated 2 

and applied at smaller or larger spatial scales. Similar comparisons of Bayesian approaches applied 3 

locally and generically have been made for a simple soil ionic concentration model by Reinds et al. 4 

(2008) and for a model of N2O-emissions in crops by Lehuger et al. (2009). 5 

We ask the following questions: 6 

- How effective are local stand data in reducing uncertainties about forest model 7 

parameters in a Bayesian framework? 8 

- Are the considered dynamic models for Scots pine sufficiently general to allow a generic 9 

calibration to data from across Europe, or should models be calibrated on a country-by-10 

country basis? 11 

- How effective is Bayesian model comparison in identifying plausible predictive models, 12 

and what are the main distinguishing characteristics of forest models that are selected? 13 

- Does Bayesian model averaging lead to improved predictions compared to individually 14 

calibrated models? 15 

Although these questions, as well as the models and data used, are focused on forestry in Europe, 16 

our methodology is unrestrictedly general. BC, BMC and BMA, and the contrasts made between 17 

within- and cross-country applications, can be applied to any other combination of data sets and 18 

models in the environmental sciences. 19 

 20 

 21 

2. Materials and Methods 22 

 23 

 2.1 Overview of methodology 24 

Our study used 6 models and 12 data sets which originated from forest measurements in four 25 

European countries (Table 1). The data were from National Forest Inventory (NFI) sites and 26 

from sites with Permanent Sample Plots (PSP). From all sites we retrieved environmental data 27 

(weather, soil, management) and tree growth data (height, diameter). These data were used by 28 

all models to the extent of each model‟s input data requirements (Table 2). Fig. 1 is a flow 29 

chart that shows how the data were used in the consecutive stages of the study. The 30 

environmental data from the NFI-sites were used as drivers for model application to those 31 

sites. Each model was run multiple times for each NFI-site, to assess the impact of parameter 32 

uncertainty on model outputs. We refer to this step as „prior uncertainty quantification‟ (prior 33 

UQ) because no data of tree growth had been used at this point for improvement of parameter 34 

values. The distributions of model outputs generated by this prior UQ were used in a Bayesian 35 

model comparison (prior BMC) to quantify the relative plausibility of each model before 36 



5 

 

calibration. These differences in model plausibility were then used as weights in Bayesian 1 

model averaging (BMA), thus producing an averaged prediction to which all six models 2 

contributed differently. Next, the NFI-data were used for Bayesian calibration of the 3 

parameters of the different models. The calibration was carried out both per country and 4 

generically using data from all NFI-sites. The calibrated models were then applied to the PSP-5 

sites using local environmental data. At this stage, we again carried out uncertainty 6 

quantification, now termed „posterior UQ‟ because the model parameter distributions were 7 

already informed by the NFI-data. Finally, the results from the posterior UQ were compared 8 

with measurements from the PSP-sites for a posterior Bayesian model comparison, again 9 

accompanied by BMA. In the rest of this section, we describe data, models and statistical 10 

methods in more detail.  11 

 12 

 13 

[FIG. 1 HERE] 14 

 15 

 16 

 2.2 Data 17 

Data of twelve even-aged P. sylvestris stands were assembled from four European countries 18 

(Table 1). From each country, two NFI sites and one PSP-site were selected for this study. An 19 

exception was Estonia, for which NFI-data were not available and three PSPs were used. For 20 

ease of reference, we used a site-code for each site consisting of the first letter of the 21 

country‟s name, followed by 1 or 2 for the NFI-sites and 3 for the PSP-site (Table 1), except 22 

for Estonia where the numbers refer to the three PSPs. For model calibration, we only used 23 

data from the sites coded 1 or 2, whereas for model comparison and averaging the data from 24 

sites with code number 3 were used. The data used were for mean tree height and stem 25 

diameter at 1.3 m above ground, which were available from all sites. Data on stem number 26 

and tree age were used as uncalibrated inputs. All sites provided several measurements for the 27 

different variables (between 2 and 7), separated by intervals of at least 5 years (Fig. 2). We 28 

now briefly describe the sites in each country. 29 

 30 

[FIG. 2 HERE] 31 

 32 

2.2.1 Austria 33 

The NFI-plots A1 and A2 are part of the Austrian Forest Inventory grid consisting of 34 

~10000 points. The plots are 100% P. sylvestris and the soils are classified as 35 

Semipodsol and Cambisol with soil depths exceeding 0.3 m and field capacity around 36 
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36%. They are located at different altitudes in the “Waldviertel”, a region in Lower 1 

Austria north of the Danube. A1 lies about 300 m higher than A2 and is cooler and 2 

drier. On both sites, measurements were taken in two years (1987 & 2000 and 1989 & 3 

2002). The sample consisted for each plot of a combined angle count measurement 4 

(for trees > 10.5 cm diameter) and a circle with a fixed radius (for trees < 10.5 cm). 5 

Height measurements were done for a subset of trees of the angle count measurement; 6 

the other heights were calculated. Nothing is known about management history or 7 

planting time, except that no management occurred during the period of 8 

measurements. 9 

 The selected PSP-site, A3, was established in 1970 and measured every five 10 

years. The site is maintained by the Austrian Federal Forest Office BWF 11 

(http://bfw.ac.at/) and is located near A2 with similar soil properties. It is a pure P. 12 

sylvestris stand with a size of 1500 m² and a stem number of 790 ha
-1

 in 1980. 13 

 Climate data for the NFI- and PSP -sites were provided from nearby weather 14 

stations of the Austrian weather service ZAMG (Central Institute for Meteorology 15 

and Geodynamics). 16 

 All three stands reached heights of about 18 m at an age of about 60 years. 17 

However, they differ significantly in diameter (207-324 mm), with lower values at 18 

high stem number. 19 

2.2.2 Belgium 20 

The Belgian plots B1 and B2 are NFI‟s of the ANB (Agentschap Natuur en Bos,  21 

„Forest and Nature Agency‟), situated in the Campine region of north-eastern 22 

Belgium, were established in 1937 and 1942 respectively and regularly thinned since 23 

then from the original 12500 trees ha
-1

. B1 is situated on loamy sand, and data from 24 

2000 and 2004 were available; thinning during this period reduced stem number from 25 

400 to 380 ha
-1

. B2 is situated on sandy soil close to B1 and data from 2000 and 2008 26 

were available. Thinning during this period reduced stem number from 520 to 393 27 

ha
-1

.  The data were obtained from 40 x 25 m sample plots. 28 

 The PSP-site, B3, “De Inslag”, is a mixed patchy coniferous/deciduous forest 29 

located in Brasschaat also in the Belgian Campine region. The site is part of the 30 

European Carboeurope-IP network and is a level-II observation plot of the European 31 

network program (ICP-II forests) for intensive monitoring of forest ecosystems (EC-32 

UN/ECE, 1996), managed by the Flemish Research Institute for Nature and Forest 33 

(INBO). Here we only focus on one particular even-aged Scots pine stand planted in 34 

1929 and described by Curiel Yuste et al. (2005). In this experimental stand, stem 35 

number was 556 ha
-1

 in 1997. In November 1999, a thinning was performed reducing 36 
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the stem number to 377 ha
-1

 and further thinned to 362 ha
-1

 in 2002. The soil is loamy 1 

sand, moderately wet, with a distinct humus and iron B-horizon (Baeyens et al., 1993) 2 

and is classified as Umbric Regosol. Although the Belgian plots are on relatively 3 

sandy soils, soil water table is quite high (0.7-1.1 m) and soil fertility is high due to 4 

high nitrogen deposition (30-40 kg N ha
-1 

year
-1

). 5 

 Despite similar age (66-67 years) and stem number (380-390 ha
-1

), the two 6 

NFI-plots had quite different heights (18.4, 23.2 m) and diameter (271, 293 mm) 7 

indicating differences in site quality. The PSP-site was older and had lower tree 8 

number; height was intermediate but diameter was greater than at the NFI-plots. 9 

2.2.3 Estonia 10 

The Estonian plots E1, E2 and E3 belong to the Estonian Forest Research Plots 11 

Network which consists of more than 700 PSP and are maintained by the Estonian 12 

University of Life Sciences (Sims et al., 2009). These plots were established at the 13 

observation sites of the European network programme ICP Forest Level I plots. The 14 

plots, established in 2000, are circular with radii of 25, 20 and 25 meter, respectively 15 

and were re-measured in 2005 and 2010. The plots have not been thinned during that 16 

period, but earlier management history is unknown. On each plot, the diameter at 17 

breast height was assessed for each tree. Tree height and height to crown base were 18 

measured in every fifth tree. All three plots are dominated by Scots pine (more than 19 

90% of total volume), but there is a small mixture of Silver birch (Betula pendula) 20 

and Norway spruce (Picea abies). The plots are located in southern Estonia where 21 

mean effective temperature sum is about 1650 degree days. The plots are on sandy 22 

soils on glaciofluvial deposits with sufficient water availability belonging to WRB 23 

2006 soil units Gleyic Podzol, Histic Podzol and Albic Podzol respecticely. The 24 

vegetation types of the plots are Rhodococcum, drained Polytrichum-Nyrtillus, and 25 

Rhodococcum. The basal area of the plots reached 24.8, 33.7, and 31.8 m
2
 ha

-1
 at 26 

stand ages 70, 67, and 73 years, with average heights of 25.2, 24.7, and 25.6 m and 27 

volumes of 285, 384, and 374 m
3
 ha

-1
. Differences in diameter (237-274 mm) were 28 

larger than height differences, with largest values reached at the lowest stem number. 29 

2.2.4 Finland 30 

The Finnish plots F1 and F2 are permanent NFI sample plots located in Southern 31 

Finland established by the Finnish Forest Research Institute. They have been 32 

measured in 1985 and 1995. The plots have not been thinned during that period. The 33 

earlier treatment history is unknown. The plot size varied according to the stem 34 

diameter at breast height, being 100 m
2
 when the diameter was under 10.5 cm, and 35 

otherwise 300 m
2
. The trees with diameter smaller than 4.5 cm were measured only if 36 
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they were expected to survive until the next measuring date. Diameter at breast height 1 

and tree species were recorded from all the tally trees. Heights, crown base heights 2 

and crown widths were measured from the sample trees, which include the trees that 3 

were located in a circular area around the sample plot mid-point, where the circle 4 

radius is half of the original sample plot radius. 5 

 The Finnish plot F3 is a control plot with no thinnings in a permanent 6 

thinning experiment of the Forest Research Institute at Vesijako in southern Finland. 7 

The experiment was established in 1948 in a pine stand sown in 1918, and it was 8 

followed until 1997. The site is fairly fertile with adequate moisture for pine. The plot 9 

has a small mixture of birch (Betula spp.), less than 10% of basal area.  Plot size was 10 

1000 m
2
, and all trees were numbered on this plot and measured for breast height 11 

diameter in a total of seven measurements. For height (and crown base height in the 12 

two most recent measurements), 21-67 trees were chosen as sample trees. The final 13 

heights of 17.8 m (75 yrs, NFI 1), 10.1 m (55 yrs, NFI 2) and 21.8 m (79 yrs, PSP) 14 

indicate that despite the age difference, the site conditions at NFI 2 were probably 15 

less favourable (cf. Fig. 2a). The comparatively low stem number and the high 16 

diameter, and the fact that no mortality occurred, suggest that the NFI plots were 17 

thinned at some point before the surveys. In contrast, at the PSP-site only self-18 

thinning occurred leading to high stem numbers and low diameters. 19 

 20 

 2.3 Models 21 

We used six different forest models in the assessment, ranging from simple semi-empirical 22 

models to parameter-rich process-based models (Table 2). All models are able to predict mean 23 

tree height and mean stem diameter. Some of the models are able to simulate variation 24 

between individual trees as well, but the corresponding predictions were not tested against 25 

data. Four of the models are initialised at the first measurement date, i.e. they require the 26 

earliest observed values of mean tree height and/or diameter to quantify the model‟s initial 27 

constants (Table 2). This reduces the number of data available for Bayesian calibration. The 28 

remaining two models, 3PG and BASFOR, include state variables that are difficult to estimate 29 

from mean height and stem diameter only, such as nitrogen pools in soil and trees, and it was 30 

therefore decided to initialise them from planting. These two models therefore have more data 31 

available for calibration, but their predictions of forest growth may already start deviating 32 

from observations before the first measurement date. We shall now briefly describe each 33 

model, referring to earlier publications for more detail. Each model description finishes with 34 

an account of how the prior probability distribution for the model‟s parameters was set by the 35 
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respective modellers. The role of these probability distributions in uncertainty quantification 1 

and Bayesian calibration is explained in §§ 2.4-5. 2 

2.3.1 3PG 3 

3PG calculates the dynamics of biomass in different organs (foliage, roots and stem) 4 

and simulates the soil water balance and variables of interest to forest managers, such 5 

as stand timber volume, mean diameter at breast height, stand basal area and mean 6 

annual growth increment. Gross primary production (GPP) is calculated by 7 

multiplying photosynthetically active radiation absorbed by the stand with a light-use 8 

efficiency that changes with environmental conditions. Light absorption is calculated 9 

using Beer‟s law, while the light-use efficiency varies in dependence of atmospheric 10 

vapour pressure deficit, air temperature, the presence of frost, soil water balance, tree 11 

age and site fertility. Net primary productivity (NPP) is calculated as a constant 12 

fraction of GPP (Law et al., 2000; Waring et al., 1998). Carbon allocation is based on 13 

allometric equations, applied on a single-tree basis. The fraction of NPP allocated 14 

below-ground decreases with soil fertility. Site fertility is expressed through a site 15 

specific reduction factor (FR) that varies between 0 (for the least fertile sites) and 1 16 

(for sites that do not have nutrient limitations). The remaining NPP is partitioned 17 

between the aboveground organs as a function of stem diameter at breast height. The 18 

diameter at breast height and the average stand height are calculated through 19 

allometric functions of average aboveground biomass per tree. 3PG has been applied 20 

to various different species and sites and is widely used in research as well as by 21 

companies to assess forest growth and site productivity. Detailed descriptions of 3PG 22 

were provided by Landsberg and Waring (1997) and Sands and Landsberg (2002).  23 

 Before this study, Landsberg et al. (2005) tested the performance of 3PG for 24 

Scots pine in Finland, using a modified carbon allocation routine. Xenakis et al. 25 

(2008) coupled 3PG with ICBM/2N (Introductory Carbon Balance Model (Andren 26 

and Katterer, 1997)) a soil matter decomposition model. The new model, 3PGN, was 27 

calibrated and tested for Scots pine plantations in Scotland. The information from 28 

these two previous studies was utilised to construct the prior, using truncated 29 

Gaussian distributions. For each parameter, the prior mean was set to the average of 30 

the values used in Landsberg et al. (2005) and Xenakis et al. (2008). The bounds of 31 

the prior were set at ±30% of the mean value. The site fertility parameters were also 32 

included in the BCs and BMCs; the FRs ranged between 0 and 1, while the prior 33 

mean was 0.5. For all parameters, the prior was kept quite uninformative (i.e. high 34 

variance and wide ranges), reflecting the fact that the 3PG-modeller in the current 35 

study did not have previous experience with Scots pine. 36 
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2.3.2 4C 1 

The forest model 4C (FORESEE –FORESt Ecosystems in a changing Environment) 2 

has been developed to simulate the impact of changing environmental conditions on 3 

forest ecosystems. It is climate sensitive and calculates physiological processes on the 4 

tree and stand level depending on the process in question in daily to yearly time steps 5 

(Bugmann et al., 1997; Suckow et al., 2001). Establishment, growth and mortality of 6 

tree cohorts are explicitly modelled at the patch scale on which horizontal 7 

homogeneity is assumed. Cohorts of trees compete for light, water and nutrients 8 

(Bugmann et al., 1997). Every cohort develops specific values for fine root, foliage, 9 

stem biomass etc. and species-specific parameters steer the physiological processes 10 

for each species. Photosynthetic rate is calculated after Haxeltine & Prentice (1996) 11 

and a constant fraction of GPP is lost to respiration (Landsberg & Waring 1997). The 12 

resulting NPP thus depends on environmental conditions and is allocated according to 13 

the principles of the pipe model (Shinozaki et al. 1964) and of the functional balance 14 

(Davidson 1969) and organ-specific, constant senescence rates. In this allocation 15 

model, height growth is decoupled from diameter growth, with high degrees of intra-16 

canopy shading leading to extra height growth. Nitrogen limitation has been 17 

calculated dynamically. When the tree water demand of a cohort exceeds the plant 18 

available water in the soil, the canopy conductance and ultimately NPP of that cohort 19 

is reduced. 4C requires daily meteorological variables, a soil description including 20 

physical and chemical parameters as well as a forest stand description.For further 21 

details  of model processes and recent model applications, see Suckow et al. (2001), 22 

Lasch et al. (2005), Seidl et al. (2008) and Reyer et al. (2010). 23 

 The prior distribution for all parameters of 4C was uniform with boundaries 24 

at ±50% of the initial (standard 4C) value, reflecting large uncertainty about 25 

parameter values. The selection of the parameters to be calibrated was restricted to 26 

species-specific parameters that could be informed by Scots Pine data, giving a total 27 

of 43 parameters amenable to calibration. 28 

2.3.3 ANAFORE 29 

ANAFORE (ANAlysing FORest Ecosystems) is a stand-scale, mechanistic forest 30 

model that dynamically simulates the fluxes of carbon, water and nitrogen through 31 

the ecosystem (Deckmyn et al., 2008). The forest stand is described as consisting of 32 

trees of different size cohorts (e.g. dominant, co-dominant and suppressed trees), 33 

either of the same or of different species (deciduous or coniferous). Half-hourly 34 

carbon and water fluxes are modelled at the leaf, tree and stand level from half-35 

hourly, daily or monthly climate data. In addition to total growth and yield, the model 36 
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simulates allocation changes in crown size, DBH-height ratio, root-shoot ratio and 1 

even the daily evolution of tracheid or vessel biomass and radius, parenchyma and 2 

branch development. From these data, early and late wood biomass, wood tissue 3 

composition and density are calculated to allow wood quality estimation. Simulation 4 

of the labile carbon stored in the living tissues allows for simulation of trans-seasonal 5 

and trans-yearly effects, and simulation of the long-term effects of environmental 6 

stresses on growth. A detailed soil model including fungal, bacterial and mycorrhizal 7 

effects on SOM degradation and aggregate formation is included (Deckmyn et al., 8 

2009). Model initialisation was at the first measuring point. Because ANAFORE 9 

needs a detailed tree description – not available for most sites -  allocation as 10 

observed at the Belgian sites was used throughout (% heartwood, branch biomass, 11 

crown length). Crown width was set to fill the site. 12 

 The prior distribution for the parameters was uniform with boundaries at 13 

±10% of the initial value, reflecting measured data (mainly on the Belgian 14 

Brasschaat site) and data from literature as described in Deckmyn et al. (2008). 15 

Although ANAFORE was calibrated for Scots pine before this study, this was only 16 

for Belgian stands and the uncertainty concerning parameterisation across Europe is  17 

large, so the same prior was used. 18 

2.3.4 BASFOR 19 

The BASic FORest simulator, BASFOR, is a deterministic daily time step forest 20 

model used for simulating coniferous or deciduous forests. The model simulates 21 

carbon and nitrogen cycling in trees, soil organic matter and litter. It simulates the 22 

response of trees and soil to radiation, temperature, precipitation, humidity, wind 23 

speed, atmospheric CO2 and N-deposition, and thinning regime. The model has 14 24 

state variables, representing carbon and nitrogen pools in trees and soil, and 48 25 

parameters which include the initial constants of the state variables. Besides time 26 

series for the state variables, output may be produced of NPP, tree height, stem 27 

diameter, ground cover, LAI, N-mineralisation and other tree and soil variables. 28 

BASFOR is built from well known process representations. Light absorption is 29 

calculated by Beer's law. GPP is calculated as light absorption times a light-use 30 

efficiency (LUE). NPP is calculated as a fixed ratio of GPP. LUE is temperature-, 31 

CO2- and water-dependent and may be reduced if insufficient nitrogen is taken up by 32 

the plants. Potential nitrogen uptake scales with root system surface area. Actual 33 

nitrogen uptake is the minimum of demand, determined by tissue N-concentration, 34 

and potential uptake. Allocation of assimilates follows allometric rules, but water 35 
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stress may limit leaf area index (LAI). Turnover of tree and soil components proceeds 1 

at temperature-dependent relative rates. 2 

 The model structure was described by Van Oijen et al. (2005), more recent 3 

model applications are reported by Van Oijen & Thomson (2010) and Van Oijen et 4 

al. (2011), and the model is now also in use as the tree component of an agroforestry 5 

model (Van Oijen et al., 2010). The prior for BASFOR was constructed from beta-6 

distributions for the individual parameters, with ranges and modes based on literature 7 

as described before (Levy et al. 2004; Van Oijen et al. 2005, 2011). 8 

2.3.5 BRIDGING 9 

The BRIDGING model (Valentine and Mäkelä, 2005) was developed to bridge the 10 

gap between process-based and empirical approaches to modelling tree growth by 11 

formulating a process-based model that can be fitted and applied in an empirical 12 

mode. Tree growth in the model is based on carbon balance, and its allocation is 13 

consistent with pipe model theory and an optimal control model of crown 14 

development (Mäkelä and Sievanen, 1992). These provide a framework for 15 

expressing the components of tree biomass in terms of tree height, crown height and 16 

stem cross-sectional area, the growth of which is regulated by photosynthesis and 17 

respiration. The parameters of the model comprise physiological rates and 18 

morphological ratios and can be estimated from lower-level process models or direct 19 

measurements. In the empirical mode, the original parameters are combined into a set 20 

of fewer, aggregate parameters which can be estimated from inventory type data 21 

using statistical procedures. Here, we calculate the photosynthesis and respiration 22 

parameters from lower-level models of stand  productivity (Mäkelä et al., 2008) and 23 

canopy structure (Duursma and Mäkelä, 2007) using a procedure proposed by 24 

Härkönen et al. (2010). The productivity model is driven by daily data of global 25 

radiation, vapour pressure deficit and air temperature, while field data on inventory 26 

variables (stand-level mean values of height, diameter, crown base height and crown 27 

width, stocking density or basal area, and site fertility) are used for parameterising 28 

canopy structure. These parameters are given fixed, deterministic values. The 29 

parameters related to growth of tree height and basal area are employed in their 30 

aggregate form and estimated using the Bayesian approach with the given inventory 31 

data. 32 

 The Bridging model has 38 different parameters, of which the 13 parameters 33 

relating to the dynamic growth of tree height and basal area were used in the 34 

calibration. Uniform distributions were used throughout. Parameters left out of the 35 

calibration included structural relationships, which were calculated directly based on 36 
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the measured stand data, biomass estimates, and light-use efficiency estimates. The 1 

uniform distributions were mainly quantified based on earlier pipe model studies 2 

(Mäkelä 1997, Mäkelä and Vanninen 2001, Vanninen and Mäkelä 2005, Valentine 3 

and Mäkelä 2005, Palmroth et al. 1999, Duursma and Mäkelä 2007). 4 

2.3.6 FORMIND 5 

FORMIND is an individual-based, spatially semi-explicit gap-type model (Köhler 6 

and Huth, 1998; Ruger et al., 2007). Spatially semi-explicit means that the modelled 7 

plot (in this case 1 ha) is divided into 20 x 20 m gaps. Tree individuals are assigned to 8 

one of these gaps, but do not have an explicit position within gaps. As in classical gap 9 

models, tree crowns are assumed to cover the gap uniformly in horizontal direction at 10 

a certain height, depending on the size of the trees. The vertical stratification through 11 

the different crown heights of the trees and the differences in light climate that result 12 

from that for each individual tree are important determinants of the predicted 13 

community dynamics. NPP is calculated as the difference between GPP and 14 

respiration. GPP of each individual tree depends on the available light at crown top, 15 

temperature and soil water content. The temperature dependence follows a hump 16 

shape. A reduction due to insufficient soil water occurs below a threshold and GPP is 17 

completely reduced if soil water content falls below the permanent wilting point. 18 

Additionally, maintenance respiration has a temperature dependence following the 19 

Q10-approach (Gutiérrez and Huth, 2012). The model was initialised for each site at 20 

the first recorded year with the observed number of trees, all of the same observed 21 

average diameter, randomly distributed over the modelled area of one hectare. 22 

 The marginal prior probability distributions for FORMIND were all uniform. 23 

Parameters were excluded from the calibration that were either unrelated to those 24 

model outputs that were compared to calibration data, or for which there were other 25 

parameters already under calibration that acted on the model outputs in a similar way. 26 

Based on this premise, four parameters were selected for calibration. These included 27 

the two parameters that determine the diameter-height relationship, the main growth 28 

parameter that determines the maximum growth rate under full light, and the wilting 29 

point, which is the determinant of how strongly the plants react to water stress. The 30 

other parameters were fixed according to literature data. For each of the calibration 31 

parameters, flat and relatively wide priors were chosen reflecting large uncertainty 32 

about parameter values. 33 

 34 

 2.4 Uncertainty quantification (UQ) 35 
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Predictive uncertainty (i.e. uncertainty regarding model outputs) was quantified for each 1 

model at three stages in our study: before any parameter calibration had been carried out 2 

(prior UQ), and after country-specific and generic calibration (posterior UQ) (Fig. 1). In each 3 

case, the UQ consisted of running the model 1001 times, using a sample of that length from 4 

the parameter distribution for the model. 5 

  For each model, the prior parameter uncertainty - before any of the NFI- or PSP-data 6 

had been used for calibration – was expressed in the form of a probability distribution. This 7 

was done by each modelling group separately, no standardisation of priors being attempted 8 

(see §2.3). To derive from that the prior predictive uncertainty, we used a sample consisting 9 

of the mode of this parameter distribution plus 1000 other parameter vectors sampled from the 10 

prior distribution using Latin Hypercube Sampling to ensure good coverage of parameter 11 

space. This prior UQ was carried out for all 12 sites. 12 

  To assess the posterior predictive uncertainty, i.e. the uncertainty resulting from the 13 

reduced parameter uncertainty after country-specific or generic Bayesian calibration (see 14 

below), we used the mode of the posterior parameter distribution, i.e. the Maximum A 15 

Posteriori (MAP) parameter vector, and again 1000 other parameter vectors that were selected 16 

by equidistant subsampling from the parameter chains generated in the calibration. Posterior 17 

UQ was carried out only for PSP-sites because the data from those sites had not been used in 18 

the calibration. 19 

 20 

 2.5 Bayesian calibration (BC) 21 

Bayesian calibration was carried out as documented in other recent forest model studies (Van 22 

Oijen et al., 2011; Van Oijen et al., 2005) and we shall give only a brief outline here. The 23 

method starts by expressing uncertainty about the model‟s parameter values in a so-called 24 

prior parameter distribution, P(θ). In this notation, θ represents the full parameter vector of a 25 

model, so P(θ) is a multivariate distribution. All modellers in this study assigned prior 26 

distributions without any correlations between different parameters, so P(θ) could be written 27 

as the product of independent distributions for the individual parameters. By comparing 28 

model predictions with NFI-data, D, we can derive a likelihood value P(D|θ) for each possible 29 

parameter value (see below), which can be interpreted as a relative “goodness-of-fit” measure 30 

for this parameter (Hartig et al., 2012). Bayes‟ formula then allows us to combine both pieces 31 

of information (prior and likelihood) into one posterior parameter distribution. The formula 32 

states that  33 

 34 

P(θ|D)  P(θ) P(D|θ), 35 

 36 



15 

 

i.e. that posterior probability is proportional to prior times likelihood P(D|θ). To derive a 1 

likelihood function, we made the assumption, for all models and measurements, that 2 

measurement errors were normally distributed with a coefficient of variation of 20%. The 3 

fairly high value of 20% was chosen to account for multiple factors affecting the 4 

measurements, including instrument error, demographic stochasticity of the tree populations, 5 

and environmental heterogeneity. No correlations between measurement errors were assumed, 6 

so our likelihood function could be written as the product of independent Gaussian functions 7 

of the difference between data D and model output M(θ): 8 

 9 

 P(D|θ) = Probability of measurement error equal to D-M(θ) 10 

= ),)2.0(,0);((
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where the i-subscripts index the n data points and the corresponding model outputs, and where 12 

φ denotes a Gaussian probability density function with given mean and variance. 13 

  To estimate the posterior distributions, we used a Markov Chain Monte Carlo 14 

(MCMC) algorithm (Metropolis et al., 1953; Van Oijen et al., 2005). Convergence of the 15 

MCMC was verified both visually – by inspection of the parameter trace plots – and by 16 

calculation of the Gelman-Rubin statistic (Gelman and Rubin, 1992). 17 

 18 

 2.6 Bayesian model comparison (BMC) and calculation of NRMSE 19 

Bayesian model comparison relies on the same probabilistic ideas as BC, but now the 20 

probability distribution to be informed by the data is not that for the parameters but for the 21 

models themselves (Kass and Raftery, 1995). A key strength of BMC is that it evaluates 22 

models not at one single parameter vector value but takes into account parameter uncertainty 23 

(Tuomi et al., 2008). The formal need for this coverage of parameter uncertainty is seen when 24 

we write out Bayes‟ Theorem as applied to model comparison: 25 

 26 

P(M|D)  P(M) P(D|M), 27 

 28 

where, following the law of total probability: 29 

 30 

P(D|M) = .d )P( ))(|( MDP  31 

 32 

So each model‟s parameter uncertainty, and not only the best value, determines how much 33 

support a model receives. Among other things, this provides a natural safeguard against 34 
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overfitting using overly flexible models. P(D|M) is referred to as the „integrated likelihood‟, 1 

or also the „marginal likelihood‟ as it is calculated by marginalizing out the uncertain 2 

influence of the model‟s parameters. We assumed that each model had the same prior 3 

probability of 1/6 before any data were used. Application of the models to the NFI-sites, in 4 

the prior UQ, provided 1000 model results which were used to derive each model‟s integrated 5 

likelihood for those data. The posterior probability for each model was then calculated as the 6 

model‟s integrated likelihood divided by the sum of the integrated likelihoods for all models 7 

(Kass and Raftery, 1995). A similar procedure was applied at the next applications of BMC, 8 

where the integrated likelihoods of the models were calculated for the PSP-data after the 9 

models had been calibrated on the NFI-data. These posterior BMC‟s were carried out after 10 

both country-specific and generic BC. 11 

  Additionally, we calculated a standard goodness-of-fit measure, the normalised root 12 

mean squared error (NRMSE), for model predictions at PSP-sites. This was done for both the 13 

prior and posterior parameter distributions. In contrast to the calculation of the integrated 14 

likelihood, the NRMSE had to be calculated separately for height and diameter as its 15 

calculation involves a normalisation by the average of the measurements: 16 

 17 
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Where nc is the number of countries from which PSP-data were used, Dc are the measured 20 

values, D  is the average of the measurements across the nc countries, θ indexes the 1000 21 

parameter vectors sampled from prior or posterior distribution and Mc(θ) is model prediction 22 

for country c using parameter vector θ. In the case of the prior and generic posterior parameter 23 

distribution, the calculation of NRMSE uses nc = 4, but in the case of country-specific 24 

posteriors, NRMSE is calculated first per country (nc = 1) followed by averaging of the four 25 

errors to arrive at an estimate of overall NRMSE. 26 

 27 

 2.7 Bayesian model averaging (BMA) 28 

Bayesian model averaging uses the different model probabilities P(M), derived in preceding 29 

BMC, to calculate a weighted probability distribution for model outputs (Hoeting et al., 1999; 30 

Kass and Raftery, 1995): 31 

 32 
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Where P(y) is the averaged output distribution, P(M
(m)

) is the probability for model m as 2 

derived from the BMC, and P (y|M
(m)

) is the output distribution for model M
(m)

. Expanding the 3 

last term gives:  4 

P(y)  = ,)(),|()(
6
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5 

 which shows that the BMA accounts for both overall model structural uncertainty, P(M
(m)

), 6 

and each individual model‟s parameter uncertainty, P(θ
(m)

). In this study, BMA was applied 7 

after both prior and posterior BMC, with P(θ
(m)

) representing prior and posterior parameter 8 

uncertainty, respectively. The same model output samples used in BMC were used for BMA 9 

as well, but subsampled with sample size proportional to P(M
(m)

). The BMA-forecasts thus 10 

produced were compared against the measurements at the PSP-sites. Note that in this 11 

procedure only the prior BMA was subjected to a fully out-of-sample test of predictive 12 

capacity of the model averaging. 13 

 14 

 15 

[FIG. 3 HERE] 16 

 17 

 18 

 19 

3. Results 20 

 21 

 3.1 Uncertainty quantification before and after Bayesian calibration 22 

The first quantity calculated was the prior predictive uncertainty, that is, the model 23 

uncertainty before any data were used for calibration. Table 3 shows summary statistics of the 24 

prior predictive distributions for the NFI-sites: the value of mode of the prior plus the 5% and 25 

95% quantiles. Figs 3 and 4 depict the ranges between the 5% and 95% quantiles for the PSP-26 

sites. The prior output ranges – delimited by the 5% and 95% quantiles – were generally 27 

widest for the three most parameter-rich models, i.e. ANAFORE, BASFOR and 3PG. 28 

 Bayesian calibration (BC) was carried out both per individual country and 29 

generically, so samples from five different posterior parameter distributions were produced 30 

for each model. Our results show that generic Bayesian calibration reduced parameter 31 

uncertainty in all models except ANAFORE, with average reductions in the standard 32 

deviation of marginal parameter distributions (i.e. for individual parameters) ranging from 1 33 

to 13%. These averages were invariably the result of a majority of parameters being hardly 34 

affected by the BC and a small number with strongly reduced uncertainty, with maximum 35 



18 

 

reductions in standard deviation for individual parameters ranging from 6 to 83% across all 1 

models (data not shown). The results of country-specific BC were similar but with generally 2 

lower reductions in uncertainty. 3 

 Figures 3 and 4 show predictive uncertainty after calibration for mean height and 4 

diameter. With respect to output uncertainty, measured as the distance between the 5% and 5 

95% quantiles, the results for country-specific and generic BC were quite similar (Table 3; 6 

Figs 3, 4). BC reduced tree height uncertainty in all models, but most in 3PG and BASFOR 7 

and least in BRIDGING. For stem diameter, 3PG and BASFOR again saw large uncertainty 8 

reductions but otherwise the results differed markedly from those for tree height, with 9 

ANAFORE and BRIDGING seeing no clear reductions in predictive uncertainty and 10 

FORMIND even becoming worse at B3, E3 and F3. 11 

 12 

 13 

[FIG. 4 HERE] 14 

 15 

 16 

 3.2 Bayesian model comparison before and after calibration 17 

The predictions of the uncalibrated models for the NFI-sites, generated as part of the prior UQ 18 

reported in the previous paragraph, were compared against the corresponding NFI-data in a 19 

prior Bayesian model comparison (BMC) (Fig. 5). Despite the fact that the data tended to fall 20 

between the 5% and 95% quantiles of each model‟s prior uncertainty ranges (Table 3), the 21 

Bayesian model comparison still assigned very different prior probabilities to the different 22 

models. The most parameter-rich model, ANAFORE, and the two models initialised at 23 

planting, 3PG and BASFOR, had prior probabilities orders of magnitude lower than the other 24 

three models. BRIDGING and, to slightly lesser extent, 4C achieved the highest integrated 25 

likelihoods (Fig. 5). 26 

 The posterior BMC, in which models outputs after calibration were compared with 27 

measurements at PSP-sites, showed smaller differences between model probabilities and 28 

slightly altered the ranking of the models (Fig. 5). The posterior BMC assigned the highest 29 

probability to 4C, followed by BRIDGING and FORMIND with 3PG thereafter.  30 

 Similar ranking can be observed in the values of NRMSE (Fig. 6), which like the 31 

integrated likelihoods of the models were calculated as averages for the whole parameter 32 

distribution. For all models except ANAFORE, the values of NRMSE for mean height and 33 

diameter were markedly reduced by BC but with little difference between country-specific 34 

and generic BC. 35 

 36 
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 7 

 3.2 Bayesian model averaging before and after calibration 8 

The weighted average predictions of the models for the PSP-sites, using prior and posterior 9 

model probabilities as weights, are included in Figures 3, 4 and 6. The prior BMA, which was 10 

based on model probabilities derived from NFI-data without any model calibration, showed 11 

robust out-of-sample predictive capacity for the PSP-sites, as shown by low NRMSE-values 12 

for both output variables (Fig. 6). In the case of tree height, only the BRIDGING model had 13 

lower NRMSE, whereas for stem diameter only 4C had clearly lower error. Also, predictive 14 

uncertainty from the prior BMA was moderate, with at least half of the models showing larger 15 

uncertainty ranges for all combinations of variable and site except stem diameter at F3. 16 

 Predictions from posterior BMA were also compared against the measurements at 17 

PSP-sites (Figs 3, 4, 6). In contrast to the tests of prior BMA, and despite the fact that only 18 

NFI-data were used in model calibration, these were in-sample tests of predictive capacity 19 

because PSP-data had been used to calculate the model probabilities. Prediction using 20 

posterior BMA was less of an improvement compared to most individual models than was the 21 

case for prior BMA (Figs 3, 4, 6). 22 

 23 

 24 

4. Discussion 25 

 26 

 4.1 Model performance before and after Bayesian calibration on NFI-data 27 

If forest models are to be useful in management, their predictions must be sufficiently 28 

accurate and precise. A quantification of model accuracy for growth is given in Table 3, 29 

where the predictions for the modes of prior parameter distributions can be compared against 30 

measurements. The same table also provides information about predictive uncertainty, in the 31 

form of the 5% and 95% quantiles of model predictions. The results show that only the 32 

BRIDGING model had high a priori predictive accuracy for mean tree height with low 33 

accompanying uncertainty at all sites except F3. For stem diameter, none of the uncalibrated 34 

models was very precise – BRIDGING, 4C and FORMIND did best – and only BRIDGING 35 

and FORMIND had low uncertainties throughout. The balance of accuracy and precision for 36 
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the NFI-sites was such that the prior Bayesian model comparison assigned 55% prior 1 

probability to BRIDGING and 42% to 4C. 2 

 One reason for the prior success of BRIDGING and 4C, and to lesser extent 3 

FORMIND, was that these models were initialised for each site at the first date of 4 

measurement. The models were thus started off with values of mean tree height and stem 5 

diameter correct for the site, and with fewer years of growth remaining to be predicted than 6 

what was asked from models initialised at planting, such as 3PG and BASFOR. The 7 

advantage of late model initialisation – having less time to deviate from true on-site growth 8 

patterns - apparently weighed heavier than that of 3PG and BASFOR being able to process 9 

more detailed information about the site conditions. Furthermore, information about the early 10 

management history of sites, such as the tree thinning regime, tends to be less reliable than 11 

information for the measurement periods. Late initialisation, however, does not always 12 

improve predictive performance, as demonstrated by the results for ANAFORE. In the case of 13 

ANAFORE, a highly detailed model, there was a large suite of other state variables besides 14 

mean height and diameter that needed to be initialised, and for which no good information 15 

was available for most sites so default model settings could not be adjusted. While some 16 

models may be designed to run with stand-level information such as typically provided by 17 

NFIs, other models may perform better if more detailed initialisation data are available. In 18 

this study, the most complex model, ANAFORE was clearly overparameterized in relation to 19 

the very limited data. We also note that BRIDGING and 4C might have been rated best if 20 

initialisation values would have been estimated rather than being set a priori – but that was 21 

not investigated in this study.  22 

 These comparisons of the prior performance of the different models were inevitably 23 

also affected by how the prior parameter distributions were defined. Different methods for 24 

quantifying prior parameter distribution of a process-based forest model, PnET-II, were 25 

discussed by Radtke et al. (2001). The prior distributions in our study were set independently 26 

by each modelling group, using the information available to them from literature and from 27 

previous experience with their model. This partly explains why some models, such as 3PG, 28 

showed wider prior output ranges than other models. 29 

 To restrict the influence of subjective prior parameterisation, it is therefore important 30 

to compare differences in model performance after all models have been calibrated for the 31 

tree species under study. Both country-specific and generic Bayesian calibration on NFI-data 32 

markedly increased the accuracy and precision of prediction for the PSP-sites by all models 33 

except the most complex and parameter-rich model, ANAFORE (Figs 3, 4). After these 34 

general improvements, the 4C model performed best (Fig. 5), but note that the differences in 35 

model initialisation method again affected the results, and that the strength of the data was 36 
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probably still not sufficient to completely overrule the effect of prior choice after calibration. 1 

Also note that the assessments of model performance and plausibility in this study are 2 

restricted to predictions for mean tree height and stem diameter. If data from other variables, 3 

such as above-and belowground biomass and wood quality, had been used, model evaluation 4 

would likely have yielded different results. 5 

 6 

4.2 Spatial differences in model performance 7 

All models had the poorest predictions of mean tree height for the Finnish PSP-site. That site, 8 

F3, had an atypically high stem number (Table 1), which may have contributed to 9 

comparatively strong height growth at relatively small diameter despite advanced age (Fig. 2). 10 

Most models apparently struggled to simulate this growth pattern, irrespective of model 11 

complexity. The problems with this site largely persisted after calibration. 12 

 Sites within a single country are likely to be more similar in tree provenance, soil 13 

type and climate than sites in different parts of Europe. Therefore, the performance of models 14 

at a given PSP-site was expected to be best after calibration exclusively on the two NFI-sites 15 

from the same country, as opposed to model performance after generic calibration on all NFI-16 

sites. However, the two types of calibration led to predictions of similar integrated likelihood 17 

and NRMSE (Figs 5 and 6). It should be noted that this somewhat surprising result is partly 18 

explained by the fact that we had fewer data available per country, so the likely greater 19 

relevance of data used in within-country calibration was offset by the low weight of evidence 20 

from using data from 2 NFI-sites as compared to 8 in generic BC. Still, it can be conjectured 21 

that the considered models are sufficiently general to provide a useful generic 22 

parameterisation for Scots pine in Europe, although a future study with larger numbers of 23 

NFI-sites per country would be needed to test this hypothesis rigorously. The extra sites 24 

should be chosen to cover spatial variation in tree genotypes and geographical conditions. 25 

Such increased spatial coverage would also be needed if we want to move from assessing 26 

model predictive capacity at site-level to country-wide upscaling. 27 

 28 

4.3 Quantifying and reducing uncertainties 29 

The extent to which Bayesian calibration can reduce parameter uncertainties of a model 30 

depends both on the structure of the model and on the prior distribution assigned by the 31 

modeller. In the present study, Bayesian calibration reduced parameter and output uncertainty 32 

of all models except the parameter-richest one, ANAFORE. Likewise, the Bayesian model 33 

comparison was able to identify which models were most plausible by calculating the 34 

integrated likelihood for each model at different stages in the study. The integrated likelihood 35 

accounts for parameter uncertainty (by integrating over its distribution) and is a natural way 36 
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of combining diverse measurements in one model comparison criterion. This is in contrast to 1 

the commonly used NRMSE, which has to be calculated for every variable separately. 2 

Another potential advantage of the integrated likelihood over other measures, such as 3 

NRMSE and squared correlation coefficient, r
2
, is that the integrated likelihood can account 4 

for different levels of uncertainty about measurement error for different data points. However, 5 

that did not play a role in the present study because all height and diameter data were assumed 6 

to have the same degree of uncertainty. 7 

 8 

4.4 Impact of the choices of prior distribution 9 

As discussed in §§ 4.2-4, the choices made to set the prior probability distributions for the 10 

parameters of the different models affected our results to some degree, in particular in the 11 

early stages of the analysis where the prior predictive performance of the models was 12 

quantified and compared. Because prior distributions for structurally different models cannot 13 

be set in a standardised way, and were based on the expertise of the responsible modellers, 14 

this introduced a subjective element in the study. This included model-specific choices about 15 

parameter-screening, i.e. which of a model‟s parameters to include in the Bayesian 16 

calibration. This subjectivity concerning the prior parameter distribution is unavoidable, to 17 

some extent, in any application of Bayesian methodology. However, the procedure we applied 18 

here, where all models were calibrated on the same data (NFI) and were subsequently 19 

compared against the same independent data (PSP) removed much of the effect of the choice 20 

of prior (Figs 3, 4). We therefore suggest that Bayesian model comparisons are most useful 21 

after such standardisation. 22 

  23 

4.5 On the use of multiple models 24 

The use of BMC is formally conditional on one of the models being „correct‟ – which is never 25 

truly the case in environmental modelling – so we should use the results from the BMC as a 26 

guide towards finding the most plausible model in the set of six rather than as formal model 27 

probabilities. The results suggest that the 4C model should be recommended as the model of 28 

choice for a forest manager who wants to select a single model to help estimate future 29 

productivity out of the six models in this study. We believe that for the forest scientist the 30 

results are less clear-cut because the Bayesian probabilities do not by themselves explain what 31 

makes one model structure more plausible than another. The Bayesian model comparison 32 

largely treats the models as black boxes characterised by their input-output relationships. In a 33 

previous Bayesian forest model comparison (Van Oijen et al., 2011) it was therefore 34 

recommended that after the BC of all models, and their BMC, a detailed analysis should be 35 

carried out of the model-data mismatch remaining after calibration. It was recommended in 36 
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particular to decompose likelihoods into terms for individual output variables and to 1 

decompose mean squared errors (MSE) into terms for bias, variance mismatch and phase-shift 2 

(Kobayashi and Salam, 2000). However, in our study with only two output variables and 3 

extremely short time-series, these decompositions are not informative. To allow such detailed 4 

study of model-data mismatch – and therefore to help explain the results presented here – we 5 

would need more detailed data sets, e.g. long time-series of annual data. 6 

 Another natural follow-up to BMC, and one that was carried out in this study, is 7 

calculating forecasts using Bayesian model averaging (BMA; e.g. Kass and Raftery, 1995). In 8 

BMA, no single model is selected for making predictions; instead the probability distributions 9 

for the individual model predictions are averaged using as weights the model probabilities 10 

determined by the BMC. Because BMA integrates parameter and model structural 11 

uncertainty, it is less prone to underestimation of predictive uncertainty than the common 12 

practice of selecting and using only a single „best‟ model. In the present study, the out-of-13 

sample predictive capacity of BMA was very good, as shown by the NRMSE-values for both 14 

output variables in the prior BMA. This is not exceptional; BMA has been reported to have 15 

higher forecasting skill than each individual model in other fields, such as medical prognosis 16 

(Hoeting et al., 1999) and climate prediction (Min and Hense, 2006). We found that the 17 

predictive performance of posterior BMA was only average. However, this was a partly 18 

within-sample test - with model probabilities (but not parameters) informed by the PSP-data - 19 

so this should be repeated with independent data. 20 

 21 

 22 

5. Conclusions 23 

 24 

- Bayesian calibration successfully reduced uncertainties in parameters and predictions of 25 

five out of six forest models. 26 

- Calibrating models separately for each country did not clearly improve within-country 27 

predictive capacity compared to generic calibration. This might change when more data 28 

become available per country. 29 

- Bayesian model comparison using NFI- and PSP-data identified the 4C model, which is 30 

of moderate complexity but mechanistic, as the most plausible forest model after 31 

calibration. 32 

- The main caveat to the results is the issue of model initialisation: how it is carried out and 33 

which data are available for it. This study suggests that models are favoured that are 34 

initialised using on-site measurements of tree growth, unless model complexity requires 35 

more data for such initialisation than are available. But model ranking might have been 36 
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different if more data, or data from other variables than mean tree height and stem 1 

diameter, would have been available for use. 2 

- For a detailed analysis of model-data mismatch, NFI-data are insufficient, but information 3 

from PSPs not used in this study, such as single tree data, could be used. 4 

- BMA afforded good out-of-sample forecasts of forest productivity and may be a 5 

promising tool for forest management, of sufficient accuracy and precision whilst not 6 

underestimating uncertainties. 7 

 8 

 9 
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 1 
Table 1. Data. Each row represents one of the twelve measurement sites. If multiple values of stem number 

are shown, they refer to changes over the period of measurement. The rightmost column gives the total 

number of data points at the site, for tree height and diameter combined. 

Country 

Site 

name 

Site 

code 

Site 

type 

Lat. 

(º) 

Long. 

(º) 

Plot 

size 

(m2) 

Mean 

temp. 

(º C) 

Mean 

precip. 

(mm y-1) 

Age at  

last obs. 

(y) 

Stem number 

(ha-1) 

# 

Data 

Austria Point 1 A1 NFI 48.31° 14.79° 1200 7.6 855 ~64 

 

554-526 4 

Point 2 A2 NFI 48.51° 15.70° 1200 9.2 466 ~66 1772-1363 4 

PSP A3 PSP 48.51° 15.70° 1500 9.2 466 59 790-690 4 

Belgium Hechtel B1 NFI 51°17' 5°31' 1000 9.9 812 67 400-380 4 

Pijnven B2 NFI 51°17' 5°31' 1000 9.9 819 66 520-393 4 

Brasschaat B3 PSP 51°18' 4°31' 20000 9.9 811 79 538-362 6 

Estonia EST-1 E1 PSP 57°51' 25°55' 1963 5.4 629 70 428-402 6 

EST-2 E2 PSP 57°59' 25°38' 1257 5.4 632 67 796-692 6 

EST-3 E3 PSP 57°35' 25°17' 1963 5.3 625 73 652-667 6 

Finland NFI-1 F1 NFI 61° 58' 27° 40' 100-

300 

2.8 534 75 899 4 

NFI-2 F2 NFI 63° 50' 24° 39' 100-

300 

2.2 442 55 1067 4 

Vesijako F3 PSP 61° 20' 25° 2' 1000 3.5 521 79 8700-1710 14 

 2 

 3 

 4 

 5 
Table 2. Models. Each row represents one of the six models. The weather variables driving the models 

include radiation, temperature, precipitation, wind speed and atmospheric humidity (BASFOR), or a 

subset of those (3PG, 4C, ANAFORE, BRIDGING, FORMIND). The rightmost column shows whether 

models simulated forest growth from planting or were initialised using the earliest measurements at each 

site. IBM = Individual-Based Model requiring specification of size and position of each tree. 

Model Time 

step 

Environmental 

variables 

Number of 

state 

variables 

Number of 

parameters 

(# in calibration) 

Initialisation  

3PG Monthly Weather 9 51 (48) Planting date 

4C Daily-

Yearly 

Weather, Soil 

conditions, N-

deposition, CO2 

15 46 (43) First measurement 

ANAFORE Half-

hourly 

Weather, Soil 

conditions, N-

deposition, CO2 

26 146 (138) First measurement 

BASFOR Daily Weather, N-deposition, 

CO2, Soil conditions 

14 48 (41) Planting date 

BRIDGING Yearly Weather 5 38 (13) First measurement 

FORMIND Yearly Weather IBM 42 (4) First measurement 

 6 

7 



26 

 

 1 

 2 

Table 3. Prior predictions by six models of final tree height (m) and stem diameter (mm) on twelve sites. Site-

codes (A1, A2, etc.) are explained in Table 1. For each combination of model and variable, the first row 

shows the predictions using the mode of the prior parameter distribution, and the second gives the range (5%-

95% quantiles). The upper two rows show the measured values for comparison.  

Source Variable A1 A2 A3 B1 B2 B3 E1 E2 E3 F1 F2 F3 

Data Height 18.5 17.7 18.1 18.4 23.2 21.3 25.0 24.9 25.6 17.8 10.1 21.8 

Diameter 324 207 239 271 293 319 274 237 245 191 146 170 

3PG Height 52.4 21.0 28.4 28.6 28.8 32.8 40.7 32.7 36.0 30.2 23.5 19.5 

21.3-145 10.7-45.0 13.5-62.1 13.1-66.9 13.5-67.6 14.3-82.2 17.7-102 15.4-78.9 16.3-88.5 14.1-68.0 11.5-47.6 9.3-43.6 

Diameter 622 211 303 301 

 

305 

 

356 462 357 400 325 241 194 

337-1476 140-403 195-568 178-607 188-599 201-760 287-960 227-749 248-865 205-646 156-430 110-407 

4C Height 21.6 20.9 20.7 19.6 23.1 24.5 22.5 20.7 21.8 16.7 12.5 26.0 

15.9-29.1 15.6-27.2 14.3-29.9 17.8-25.0 20.0-30.1 19.2-32.6 20.0-29.3 19.0-25.4 21.3-26.0 14.4-22.2 7.6-20.9 10.2-45.3 

Diameter 381 267 284 287 297 352 288 254 244 205 161 340 

291-430 191-298 191-344 267-305 250-322 263-398 243-320 211-271 224-271 170-233 120-201 139-495 

ANAFORE Height 30.2 27.6 28.5 19.4 25.4 46.9 29.0 28.7 24.7 26.7 20.5 48.0 

23.9-59.2 17.4-59.1 18.3-59.2 18.9-23.1 23.3-33.6 31.4-59.0 18.8-52.0 20.5-51.6 18.5-59.2 20.3-49.5 10.0-46.6 22.4-59.3 

Diameter 457 185 330 309 323 457 471 355 376 280 238 219 

335-481 182-195 222-331 299-323 303-344 417-516 277-426 210-326 241-364 245-314 206-436 89-237 

BASFOR Height 25.9 14.6 18.9 22.5 18.9 21.2 18.0 17.9 19.0 16.4 14.6 13.1 

12.6-48.1 1.4-36.2 1.7-40.2 10.8-41.6 1.4-36.9 5.8-39.9 7.8-33.9 7.8-33.4 8.3-35.6 2.5-31.1 2.2-27.9 3.1-24.7 

Diameter 229 98 144 186 144 170 133 132 145 115 97 82 

131-319 3-221 3-261 103-259 3-220 31-244 52-190 49-189 62-208 6-170 4-143 9-119 

BRIDGING Height 18.2 17.5 18.2 19.2 21.8 22.6 22.7 21.4 23.9 17.5 11.5 12.9 

17.5-18.8 17.0-18.1 17.0-19.4 18.9-19.6 21.5-22.2 22.0-23.2 22.1-23.3 20.9-22.0 23.3-24.5 16.6-18.4 10.0-13.0 12.1-16.8 

Diameter 

 

423 261 305 312 331 353 320 271 279 226 210 265 

375-442 229-273 261-321 296-321 302-349 327-363 290-334 245-282 255-289 200-237 175-225 233-388 

FORMIND Height 26.6 21.0 22.1 22.0 20.9 22.1 20.9 18.5 19.8 16.0 11.0 8.0 

16.0-32.4 12.0-26.3 12.5-29.1 14.8-26.4 15.1-26.0 16.0-27.6 14.3-25.9 13.0-22.7 13.5-24.5 11.2-19.6 8.2-13.1 6.3-9.1 

Diameter 

 

352 251 270 268 250 270 250 210 230 170 100 63 

302-362 190-264 201-288 260-273 250-273 270-305 250-251 210-212 230-232 170-170 100-102 56-78 

 3 

4 
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Figure 2. (a) Mean tree height vs. stand age as observed at the twelve forest sites. (b) Idem for 

stem diameter. Site-codes (A1 .. F3) are explained in Table 1. 
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Figure 3. Model output uncertainty for final mean tree height at the PSP-sites A3, B3, E3, F3. 

Vertical bars show the central 90% of distributions. For each country, the three clusters of bars 

show prior and posterior (country-specific, generic) predictions. The seven bars in each cluster 

are for the six models plus the Bayesian Model Averaging result, in the order indicated in the 

bottom-left panel. The dashed horizontal lines indicate observed values, which were not used for 

model calibration. 
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Figure 4. Model output uncertainty for final mean stem diameter at the PSP-sites A3, B3, E3, 

F3. The lay-out of the figure is the same as for Fig. 3. 
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Figure 5. Prior and posterior model probabilities, derived from the integrated likelihoods of 

NFI and PSP-measurements. Left: logarithmic scale; Right: absolute scale. 
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Figure 6. Normalised RMSE, derived from simulations at PSP-sites using samples from prior 

and posterior parameter distributions. Left: tree height, right: diameter at breast height. The 

rightmost three bars in both panels are the result of Bayesian Model Averaging (BMA). 
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- Bayesian calibration successfully reduced uncertainties in parameters and predictions of 1 

five out of six forest models. 2 

- Calibrating models separately for each country did not clearly improve within-country 3 

predictive capacity compared to generic calibration. This might change when more data 4 

become available per country. 5 

- Bayesian model comparison using NFI- and PSP-data identified the 4C model, which is 6 

of moderate complexity but mechanistic, as the most plausible forest model after 7 

calibration. 8 

- The main caveat to the results is the issue of model initialisation: how it is carried out and 9 

which data are available for it. This study suggests that models are favoured that are 10 

initialised using on-site measurements of tree growth, unless model complexity requires 11 

more data for such initialisation than are available. But model ranking might have been 12 

different if more data, or data from other variables than mean tree height and stem 13 

diameter, would have been available for use. 14 

- For a detailed analysis of model-data mismatch, NFI-data are insufficient, but information 15 

from PSPs not used in this study, such as single tree data, could be used. 16 

- BMA afforded good out-of-sample forecasts of forest productivity and may be a 17 

promising tool for forest management, of sufficient accuracy and precision whilst not 18 

underestimating uncertainties. 19 
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