37 research outputs found
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Kinetic Behavior of Torrefied Biomass in an Oxidative Environment
The combustion of four torrefied wood samples and their feedstocks (birch and spruce) was studied at slow heating programs, under well-defined conditions by thermogravimetry (TGA). Particularly low sample masses were employed to avoid the self-heating of the samples due to the huge reaction heat of the combustion. Linear, modulated and constant-reaction rate (CRR) temperature programs were employed in the TGA experiments in gas flows of 5 and 20% O2. In this way the kinetics was based on a wide range of experimental conditions. The ratio of the highest and lowest peak maxima was around 50 in the experiments used for the kinetic evaluation. A recent kinetic model of Várhegyi et al. [Energy & Fuels 2012, 26, 1323-1335] was employed with modifications. This model consists of two devolatilization reactions and a successive char burn-off reaction. The cellulose decomposition in the presence of oxygen has a self-accelerating (autocatalytic) kinetics. The decomposition of the non-cellulosic parts of the biomass was described by a distributed activation model. The char burn-off was approximated by power-law (n-order) kinetics. Each of these reactions has its own dependence on the oxygen concentration that was expressed by power-law kinetics, too. The complexity of the applied model reflects the complexity of the studied materials. The model contained 15 unknown parameters for a given biomass. Part of these parameters could be assumed common for the six samples without a substantial worsening of the fit quality. This approach increased the average experimental information for an unknown parameter by a factor of 2 and revealed the similarities in the behavior of the different samples
Pre-treatment of Malaysian agricultural wastes toward biofuel production
Various renewable energy technologies are under considerable interest due to the projected depletion of our primary sources of energy and global warming associated with their utilizations. One of the alternatives under focus is renewable fuels produced from agricultural wastes. Malaysia, being one of the largest producers of palm oil, generates abundant agricultural wastes such as fibers, shells, fronds, and trunks with the potential to be converted to biofuels. However, prior to conversion of these materials to useful products, pre-treatment of biomass is essential as it influences the energy utilization in the conversion process and feedstock quality. This chapter focuses on pre-treatment technology of palm-based agriculture waste prior to conversion to solid, liquid, and gas fuel. Pre-treatment methods can be classified into physical, thermal, biological, and chemicals or any combination of these methods. Selecting the most suitable pre-treatment method could be very challenging due to complexities of biomass properties. Physical treatment involves grinding and sieving of biomass into various particle sizes whereas thermal treatment consists of pyrolysis and torrefaction processes. Additionally biological and chemical treatment using enzymes and chemicals to derive lignin from biomass are also discussed
Dix années de suivi scientifique en Haut Forez : Bilan de l'impact des procédures agrienvironnementales.
54 pagesLes Hautes Chaumes du Forez, à la limite de départements de la Loire et du Puy de Dôme sont un milieu de lande et pâturage d'altitude, traditionnellement utilisé comme parcours d'estive par les troupeaux. Le déclin de cette activité traditionnelle comme l'apparition de nouvelles fréquentations (ski, randonnées, loisirs motorisés) conduisent à un changement du milieu. Entre 1993 et 2003 des mesures de gestion ont été mises en place. Parallèlement un suivi scientifique a été également organisé afin de mieux mesurer les évolutions en cours et de mesurer l'impact des mesures de gestion. Le présent rapport fait le bilan de ce suivi. Il ne doit être considéré que comme un bilan d'étape, puisque de nouvelles actions et de nouveaux protocoles de suivi ont été mis en place au cours des années ultérieures ( 2003-2009) notamment avec la mise en place de sites Natura 2000
Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation
International audienc