203 research outputs found
MEMPHYS:A large scale water Cerenkov detector at Fr\'ejus
A water \v{C}erenkov detector project, of megaton scale, to be installed in
the Fr\'ejus underground site and dedicated to nucleon decay, neutrinos from
supernovae, solar and atmospheric neutrinos, as well as neutrinos from a
super-beam and/or a beta-beam coming from CERN, is presented and compared with
competitor projects in Japan and in the USA. The performances of the European
project are discussed, including the possibility to measure the mixing angle
and the CP-violating phase .Comment: 1+33 pages, 14 figures, Expression of Interest of MEMPHYS projec
First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory
A Compton polarimeter has been installed in Hall A at Jefferson Laboratory.
This letter reports on the first electron beam polarization measurements
performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an
average current of 40 A. The heart of this device is a Fabry-Perot cavity
which increased the luminosity for Compton scattering in the interaction region
so much that a 1.4% statistical accuracy could be obtained within one hour,
with a 3.3% total error
Momentum--dependent nuclear mean fields and collective flow in heavy ion collisions
We use the Boltzmann-Uehling-Uhlenbeck model to simulate the dynamical
evolution of heavy ion collisions and to compare the effects of two
parametrizations of the momentum--dependent nuclear mean field that have
identical properties in cold nuclear matter. We compare with recent data on
nuclear flow, as characterized by transverse momentum distributions and flow
() variables for symmetric and asymmetric systems. We find that the precise
functional dependence of the nuclear mean field on the particle momentum is
important. With our approach, we also confirm that the difference between
symmetric and asymmetric systems can be used to pin down the density and
momentum dependence of the nuclear self consistent one--body potential,
independently. All the data can be reproduced very well with a
momentum--dependent interaction with compressibility K = 210 MeV.Comment: 15 pages in ReVTeX 3.0; 12 postscript figures uuencoded; McGill/94-1
Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State
We measured the first azimuthal distributions of triple--differential cross
sections of neutrons emitted in heavy-ion collisions, and compared their
maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU)
calculations with a momentum-dependent interaction. The BUU calculations agree
with the triple- and double-differential cross sections for positive rapidity
neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum
azimuthal anisotropy ratio for these free neutrons is insensitive to the size
of the nuclear incompressibility modulus K characterizing the nuclear matter
equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende
Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium
Studies on the isospin of fragments resulting from the disassembly of highly
excited large thermal-like nuclear emitting sources, formed in the ^{197}Au +
^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different
decay systems (the quasiprojectile formed in midperipheral reactions and the
unique source coming from the incomplete fusion of projectile and target in the
most central collisions) were considered; these emitting sources have the same
initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but
different size. Their charge yields and isotopic content of the fragments show
different distributions. It is observed that the neutron content of
intermediate mass fragments increases with the size of the source. These
evidences are consistent with chemical equilibrium reached in the systems. This
fact is confirmed by the analysis with the statistical multifragmentation
model.Comment: 9 pages, 4 ps figure
Contemporary presence of dynamical and statistical production of intermediate mass fragments in midperipheral Ni+Ni collisions at 30 MeV/nucleon
The reaction at 30 MeV/nucleon has been experimentally
investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali
del Sud. In midperipheral collisions the production of massive fragments
(4Z12), consistent with the statistical fragmentation of the
projectile-like residue and the dynamical formation of a neck, joining
projectile-like and target-like residues, has been observed. The fragments
coming from these different processes differ both in charge distribution and
isotopic composition. In particular it is shown that these mechanisms leading
to fragment production act contemporarily inside the same event.Comment: 9 pages, minor correction
Fragment Isospin as a Probe of Heavy-Ion Collisions
Isotope ratios of fragments produced at mid-rapidity in peripheral and
central collisions of 114Cd ions with 92Mo and 98Mo target nuclei at E/A = 50
MeV are compared. Neutron-rich isotopes are preferentially produced in central
collisions as compared to peripheral collisions. The influence of the size (A),
density, N/Z, E*/A, and Eflow/A of the emitting source on the measured isotope
ratios was explored by comparison with a statistical model (SMM). The
mid-rapidity region associated with peripheral collisions does not appear to be
neutron-enriched relative to central collisions.Comment: 12 pages including figure
Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV
Triple-differential cross sections for neutrons from high-multiplicity La-La
collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per
nucleon were measured at several polar angles as a function of the azimuthal
angle with respect to the reaction plane of the collision. The reaction plane
was determined by a transverse-velocity method with the capability of
identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons
was extracted from the slope at mid-rapidity of the curve of the average
in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the
participant neutrons was observed in a direction normal to the reaction plane
in the normalized momentum coordinates in the center-of-mass system.
Experimental results of the neutron squeeze-out were compared with BUU
calculations. The polar-angle dependence of the maximum azimuthal anisotropy
ratio was found to be insensitive to the mass of the colliding
nuclei and the beam energy. Comparison of the observed polar-angle dependence
of the maximum azimuthal anisotropy ratio with BUU calculations for
free neutrons revealed that is insensitive also to the
incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review
Measurement of GEp/GMp in ep -> ep to Q2 = 5.6 GeV2
The ratio of the electric and magnetic form factors of the proton, GEp/GMp,
was measured at the Thomas Jefferson National Accelerator Facility (JLab) using
the recoil polarization technique. The ratio of the form factors is directly
proportional to the ratio of the transverse to longitudinal components of the
polarization of the recoil proton in the elastic
reaction. The new data presented in this article span the range 3.5 < Q2 < 5.6
GeV2 and are well described by a linear Q2 fit. Also, the ratio QF2p/F1p
reaches a constant value above Q2=2 GeV2.Comment: 6 pages, 4 figures Added two names to the main author lis
Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV
The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions
at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in
this reaction, between 52 and 95 A.MeV bombarding energies, the number of
particles emitted in the intermediate velocity region is related to the overlap
volume between projectile and target. Mean transverse energies of these
particles are found particularly high. In this context, the mass of the QP
decreases linearly with the impact parameter from peripheral to central
collisions whereas its excitation energy increases up to 8 A.MeV. These results
are compared to previous analyses assuming a pure binary scenario
- …
