278 research outputs found

    Understanding the nucleation mechanisms of Carbon Nanotubes in catalytic Chemical Vapor Deposition

    Full text link
    The nucleation of carbon caps on small nickel clusters is studied using a tight binding model coupled to grand canonical Monte Carlo simulations. It takes place in a well defined carbon chemical potential range, when a critical concentration of surface carbon atoms is reached. The solubility of carbon in the outermost Ni layers, that depends on the initial, crystalline or disordered, state of the catalyst and on the thermodynamic conditions, is therefore a key quantity to control the nucleation

    Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth

    Full text link
    Optimized growth of Single Wall Carbon Nanotubes requires a full knowledge of the actual state of the catalyst nanoparticle and its interface with the tube. Using Tight Binding based atomistic computer simulations, we calculate carbon adsorption isotherms on nanoparticles of nickel, a typical catalyst, and show that carbon solubility increases for smaller nanoparticles that are either molten or surface molten under experimental conditions. Increasing carbon content favors the dewetting of Ni nanoparticles with respect to sp2 carbon walls, a necessary property to limit catalyst encapsulation and deactivation. Grand Canonical Monte Carlo simulations of the growth of tube embryos show that wetting properties of the nanoparticles, controlled by carbon solubility, are of fundamental importance to enable the growth, shedding a new light on the growth mechanisms

    Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity

    Full text link
    Phase-change materials (PCMs) are the subject of considerable interest because they have been recognized as potential active layers for next-generation non-volatile memory devices, known as Phase Change Random Access Memories (PRAMs). By analyzing First Principles Molecular Dynamics simulations we develop a new method for the enumeration of mechanical constraints in the amorphous phase and show that the phase diagram of the most popular system (Ge-Sb-Te) can be split into two compositional regions having a well-defined mechanical character: a Tellurium rich flexible phase, and a stressed rigid phase that encompasses the known PCMs. This sound atomic scale insight should open new avenues for the understanding of PCMs and other complex amorphous materials from the viewpoint of rigidity.Comment: 5 pages, 4 figures in EP

    The Finite Field Kakeya Problem

    Full text link
    A Besicovitch set in AG(n,q) is a set of points containing a line in every direction. The Kakeya problem is to determine the minimal size of such a set. We solve the Kakeya problem in the plane, and substantially improve the known bounds for n greater than 4.Comment: 13 page

    Topological Origin of Fracture Toughening in Complex Solids: the Viewpoint of Rigidity Theory

    Full text link
    In order to design tougher materials, it is crucial to understand the relationship between their composition and their resistance to fracture. To this end, we investigate the fracture toughness of usual sodium silicate glasses (NS) and complex calcium--silicate--hydrates (CSH), the binding phase of cement. Their atomistic structure is described in the framework of the topological constraints theory, or rigidity theory. We report an analogous rigidity transition, driven by pressure in NS and by composition in CSH. Relying both on simulated and available experimental results, we show that optimally constrained isostatic systems show improved fracture toughness. The flexible to stressed--rigid transition is shown to be correlated to a ductile-to-brittle transition, with a local minimum of the brittleness for isostatic system. This fracture toughening arises from a reversible molecular network, allowing optimal stress relaxation and crack blunting behaviors. This opens the way to the discovery of high-performance materials, designed at the molecular scale

    A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images

    Full text link
    Chiral indices determine important properties of carbon nanotubes (CNTs). Unfortunately, their determination from high-resolution transmission electron microscopy (HRTEM) images, the most accurate method for assigning chirality, is a tedious task. We develop a Convolutional Neural Network that automatizes this process. A large and realistic training data set of CNT images is obtained by means of atomistic computer simulations coupled with the multi-slice approach for image generation. In most cases, results of the automated assignment are in excellent agreement with manual classification, and the origin of failures is identified. The current approach, which combines HRTEM imaging and deep learning algorithms allows the analysis of a statistically significant number of HRTEM images of carbon nanotubes, paving the way for robust estimates of experimental chiral distributions.Comment: for use of the discussed computer code, please contact the corresponding autho

    Interaction of carbon clusters with Ni(100) : Application to the nucleation of carbon nanotubes

    Full text link
    In order to understand the first stages of the nucleation of carbon nanotubes in catalytic processes, we present a tight-binding Monte Carlo study of the stability and cohesive mechanisms of different carbon structures deposited on nickel (100) surfaces. Depending on the geometry, we obtain contrasted results. On the one hand, the analysis of the local energy distributions of flat carbon sheets, demonstrate that dangling bonds remain unsaturated in spite of the presence of the metallic catalyst. Their adhesion results from the energy gain of the surface Ni atoms located below the carbon nanostructure. On the other hand, carbon caps are stabilized by the presence of carbon atoms occupying the hollow sites of the fcc nickel structure suggesting the saturation of the dangling bonds

    La primauté du droit : la situation des immigrants et des réfugiés en droit canadien au regard des Chartes et des textes internationaux

    Get PDF
    The « rule of law » which for a long time was considered as an unwritten part of the Constitution now enjoys full constitutional status. Its enshrining in the preamble of the Canadian Charter sheds considerable light on the manner in which the rights and freedoms of the Charter should be perceived. The author opens his discussion by examining the impact that the constitutionalization of the « rule of law » has had on immigrants and refugees in Canada. As the Immigration Act of 1976 confers numerous discretionary powers which could result in their abusive use, the author analyses how the Human Rights charters applicable in Canada and in Quebec can insure the legal protection of immigrants and refugees. In the second part of his study, the author discusses the principal international texts ratified by Canada which have as their purpose the protection of the rights of immigrants and refugees. As international law is not « self-enforcing » in Canada, the author shows how the internal legal community conforms to the international obligations contracted by Canada

    Structure and relaxations in liquid and amorphous Selenium

    Get PDF
    We report a molecular dynamics simulation of selenium, described by a three-body interaction. The temperatures T_g and T_c and the structural properties are in agreement with experiment. The mean nearest neighbor coordination number is 2.1. A small pre-peak at about 1 AA^-1 can be explained in terms of void correlations. In the intermediate self-scattering function, i.e. the density fluctuation correlation, classical behavior, alpha- and beta-regimes, is found. We also observe the plateau in the beta-regime below T_g. In a second step, we investigated the heterogeneous and/or homogeneous behavior of the relaxations. At both short and long times the relaxations are homogeneous (or weakly heterogeneous). In the intermediate time scale, lowering the temperature increases the heterogeneity. We connect these different domains to the vibrational (ballistic), beta- and alpha-regimes. We have also shown that the increase in heterogeneity can be understood in terms of relaxations
    corecore