210 research outputs found

    Optical and Radio monitoring of S5 1803+74

    Get PDF
    The optical (BVRI) and radio (8.4 GHz) light curves of S5 1803+784 on a time span of nearly 6 years are presented and discussed. The optical light curve showed an overall variation greater than 3 mag, and the largest changes occured in three strong flares. No periodicity was found in the light curve on time scales up to a year. The variability in the radio band is very different, and shows moderate oscillations around an average constant flux density rather than relevant flares, with a maximum amplitude of \sim30%, without a simultaneous correspondence between optical and radio luminosity. The optical spectral energy distribution was always well fitted by a power law. The spectral index shows small variations and there is indication of a positive correlation with the source luminosity. Possible explanations of the source behaviour are discussed in the framework of current models.Comment: 25 pages, 12 figure

    Historic Light Curve and Long-term Optical Variation of BL Lacertae 2200+420

    Get PDF
    In this paper, historical optical(UBVRI) data and newly observed data from the Yunnan Observatory of China(about100 years) are presented for BL Lacertae. Maximum variations in UBVRI: 5.12, 5.31, 4.73, 2.59, and 2.54 and color indices of U-B = -0.11 +/- 0.20, B-V= 1.0 +/- 0.11, V-R= 0.73 +/- 0.19, V-I= 1.42 +/- 0.25, R-I= 0.82 +/- 0.11, and B-I= 2.44 +/- 0.29 have been obtained from the literature; The Jurkevich method is used to investigate the existence of periods in the B band light curve, and a long-term period of 14 years is found. The 0.6 and 0.88 year periods reported by Webb et al.(1988) are confirmed. In addition, a close relation between B-I and B is found, suggesting that the spectra flattens when the source brightens.Comment: 21 pages, 6 figures, 2 table, aasms4.sty, to be published in ApJ, Vol. 507, 199

    A spectroscopic analysis of the chemically peculiar star HD207561

    Full text link
    In this paper we present a high-resolution spectroscopic analysis of the chemically peculiar star HD207561. During a survey programme to search for new roAp stars in the Northern hemisphere, Joshi et al. (2006) observed significant photometric variability on two consecutive nights in the year 2000. The amplitude spectra of the light curves obtained on these two nights showed oscillations with a frequency of 2.79 mHz [P~6-min]. However, subsequent follow-up observations could not confirm any rapid variability. In order to determine the spectroscopic nature of HD207561, high-resolution spectroscopic and spectro-polarimetric observations were carried out. A reasonable fit of the calculated Hbeta line profile to the observed one yields the effective temperature (Teff) and surface gravity (log g) as 7300 K and 3.7 dex, respectively. The derived projected rotational velocity (vsin i) for HD207561 is 74 km/sec indicative of a relatively fast rotator. The position of HD207561 in the H-R diagram implies that this is slightly evolved from the main-sequence and located well within the delta-Scuti instability strip. The abundance analysis indicates the star has slight under-abundances of Ca and Sc and mild over-abundances of iron-peak elements. The spectro-polarimetric study of HD207561 shows that the effective magnetic field is within the observational error of 100 gauss (G). The spectroscopic analysis revealed that the star has most of the characteristics similar to an Am star, rather than an Ap star, and that it lies in the delta-Scuti instability strip; hence roAp pulsations are not expected in HD207561, but low-overtone modes might be excited.Comment: 8 pages, 7 figures, 3 tables. Accepted for pubblication in MNRA

    Abundance analysis of prime B-type targets for asteroseismology II. B6--B9.5 stars in the field of view of the CoRoT

    Get PDF
    The CoRoT satellite is collecting precise time-resolved photometry for tens of asteroseismology targets. To ensure a correct interpretation of the CoRoT data, the atmospheric parameters, chemical compositions, and rotational velocities of the stars must be determined. The main goal of the ground-based seismology support program for the CoRoT mission was to obtain photometric and spectroscopic data for stars in the fields monitored by the satellite. These ground-based observations were collected in the GAUDI archive. High-resolution spectra of more than 200 B-type stars are available in this database, and about 45% of them is analysed here. To derive the effective temperature of the stars, we used photometric indices. Surface gravities were obtained by comparing observed and theoretical Balmer line profiles. To determine the chemical abundances and rotational velocities, we used a spectrum synthesis method, which consisted of comparing the observed spectrum with theoretical ones based on the assumption of LTE. Atmospheric parameters, chemical abundances, and rotational velocities were determined for 89 late-B stars. The dominant species in their spectra are iron-peak elements. The average Fe abundance is 7.24+/-0.45 dex. The average rotational velocity is 126 km/sec, but there are 13 and 20 stars with low and moderate Vsin i values, respectively. The analysis of this sample of 89 late B-type stars reveals many chemically peculiar (CP) stars. Some of them were previously known, but at least 9 new CP candidates, among which at least two HgMn stars, are identified in our study. These CP stars as a group exhibit Vsin i values lower than the stars with normal surface chemical composition.Comment: 21 pages, 13 figures, accepted to Astronomy and Astrophysic

    Classical novae from the POINT-AGAPE microlensing survey of M31 -- I. The nova catalogue

    Full text link
    The POINT-AGAPE survey is an optical search for gravitational microlensing events towards the Andromeda Galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. Here we describe the automated detection and selection pipeline used to identify M31 classical novae (CNe) and we present the resulting catalogue of 20 CN candidates observed over three seasons. CNe are observed both in the bulge region as well as over a wide area of the M31 disk. Nine of the CNe are caught during the final rise phase and all are well sampled in at least two colours. The excellent light-curve coverage has allowed us to detect and classify CNe over a wide range of speed class, from very fast to very slow. Among the light-curves is a moderately fast CN exhibiting entry into a deep transition minimum, followed by its final decline. We have also observed in detail a very slow CN which faded by only 0.01 mag day1^{-1} over a 150 day period. We detect other interesting variable objects, including one of the longest period and most luminous Mira variables. The CN catalogue constitutes a uniquely well-sampled and objectively-selected data set with which to study the statistical properties of classical novae in M31, such as the global nova rate, the reliability of novae as standard-candle distance indicators and the dependence of the nova population on stellar environment. The findings of this statistical study will be reported in a follow-up paper.Comment: 21 pages, 13 figures, re-submitted for publication in MNRAS, typos corrected, references updated, figures 5-9 made cleare

    The Behavior of Novae Light Curves Before Eruption

    Get PDF
    In 1975, E. R. Robinson conducted the hallmark study of the behavior of classical nova light curves before eruption, and this work has now become part of the standard knowledge of novae. He made three points; that 5 out of 11 novae showed pre-eruption rises in the years before eruption, that one nova (V446 Her) showed drastic changes in the variability across eruptions, and that all but one of the novae (excepting BT Mon) have the same quiescent magnitudes before and after the outburst. This work has not been tested since it came out. We have now tested these results by going back to the original archival photographic plates and measuring large numbers of pre-eruption magnitudes for many novae using comparison stars on a modern magnitude scale. We find in particular that four out of five claimed pre-eruption rises are due to simple mistakes in the old literature, that V446 Her has the same amplitude of variations across its 1960 eruption, and that BT Mon has essentially unchanged brightness across its 1939 eruption. Out of 22 nova eruptions, we find two confirmed cases of significant pre-eruption rises (for V533 Her and V1500 Cyg), while T CrB has a deep pre-eruption dip. These events are a challenge to theorists. We find no significant cases of changes in variability across 27 nova eruptions beyond what is expected due to the usual fluctuations seen in novae away from eruptions. For 30 classical novae plus 19 eruptions from 6 recurrent novae, we find that the average change in magnitude from before the eruption to long after the eruption is 0.0 mag. However, we do find five novae (V723 Cas, V1500 Cyg, V1974 Cyg, V4633 Sgr, and RW UMi) that have significantly large changes, in that the post-eruption quiescent brightness level is over ten times brighter than the pre-eruption level.Comment: 91 pages (preprint), AJ accepte

    WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components

    Get PDF
    In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the XMM-Newton satellite, to study its emission properties. The source was monitored in the optical-to-radio bands by 37 telescopes. The brightness level was relatively low. Some episodes of very fast variability were detected in the optical bands. The X-ray spectra are well fitted by a power law with photon index of about 2 and photoelectric absorption exceeding the Galactic value. However, when taking into account the presence of a molecular cloud on the line of sight, the data are best fitted by a double power law, implying a concave X-ray spectrum. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations suggest that the peak of the synchrotron emission lies in the near-IR band, and show a prominent UV excess, besides a slight soft-X-ray excess. A comparison with the SEDs corresponding to previous observations with X-ray satellites shows that the X-ray spectrum is extremely variable. We ascribe the UV excess to thermal emission from the accretion disc, and the other broad-band spectral features to the presence of two synchrotron components, with their related SSC emission. We fit the thermal emission with a black body law and the non-thermal components by means of a helical jet model. The fit indicates a disc temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional 140\approx 140 being rejected), corresponding to 95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n
    corecore