2,327 research outputs found

    ABIOTIC DEGRADATION OF IODOSULFURON-METHYL-ESTER IN AQUEOUS SOLUTION

    Get PDF
    The abiotic degradation of iodosulfuron-methyl-ester was investigated under both alkaline and acidic pH conditions in the dark, and results showed it to be a rather stable molecule in neutral or slightly alkaline environments. Photochemical reactions were studied using a high-pressure mercury arc lamp, and results showed that direct phototransformation is possible under normal environmental conditions (ì > 290 nm). High-performance liquid chromatography (HPLC-UV and HPLC-MS) analyses were used to identify the degradates and to study the kinetics of photodecomposition and hydrolysis. Five main products of iodosulfuron-methyl-ester degradation were tentatively identified, and one of them (4-methoxy-6-methyl-1,3,5-triazin-2-amine) was confirmed using an authentic standard. Among the phototransformation mechanisms, photosubstitution of the iodide atom by a hydroxyl group, photodissociation of the N-S bond, and photoassisted hydrolysis were observed. The quantum efficiencies (multiwavelength quantum yield) of the photodegradation under different conditions were determined, and values of 0.054 ( 0.02 (pH 9.6), 0.08 ( 0.02 (pH 7), and 0.044 ( 0.008 (pH 5.3) were obtained

    Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Get PDF
    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data

    Development of ultra-light pixelated ladders for an ILC vertex detector

    Full text link
    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested

    Atomistic mechanisms for the ordered growth of Co nano-dots on Au(788): comparison of VT-STM experiments and multi-scaled calculations

    Get PDF
    Hetero-epitaxial growth on a strain-relief vicinal patterned substrate has revealed unprecedented 2D long range ordered growth of uniform cobalt nanostructures. The morphology of a Co sub-monolayer deposit on a Au(111) reconstructed vicinal surface is analyzed by Variable Temperature Scanning Tunneling Microscopy (VT-STM) experiments. A rectangular array of nano-dots (3.8 nm x 7.2 nm) is found for a particularly large deposit temperature range lying from 60 K to 300 K. Although the nanodot lattice is stable at room temperature, this paper focus on the early stage of ordered nucleation and growth at temperatures between 35 K and 480 K. The atomistic mechanisms leading to the nanodots array are elucidated by comparing statistical analysis of VT-STM images with multi-scaled numerical calculations combining both Molecular Dynamics for the quantitative determination of the activation energies for the atomic motion and the Kinetic Monte Carlo method for the simulations of the mesoscopic time and scale evolution of the Co submonolayer

    Introduction de l'ouvrage : "Le retour des paysans ?"

    Get PDF
    Cet article est le texte introductif de l'ouvrage « Le retour des paysans ? », lui-même issu d'un colloque tenu à Marseille les 11 et 12 décembre 2003. Cette manifestation avait permis de réunir de nombreux chercheurs et doctorants représentant la plupart des disciplines en sciences sociales et analysant des situations très diverses, au Nord et au Sud. Cet ouvrage collectif est en partie le fruit de cette rencontre interdisciplinaire sur un terrain chargé de passions : les paysans et l'environnement

    QPSK Modulation in the O-Band Using a Single Dual-Drive Mach Zehnder Silicon Modulator

    Full text link
    [EN] Keeping up with bandwidth requirements in next generation short- and long-reach optical communication systems will require migrating from simple modulation formats such as on-off keying to more advanced formats such as quaternary phase-shift keying (QPSK). In this paper, we report the first demonstration of QPSK signal generation in the O-band using a silicon dual-drive Mach-Zehnder modulator (DD-MZM). The performance of the silicon DD-MZM is assessed at 20 Gb/s and compared against a similar DD-MZM based on LiNbO3, showing a limited implementation power penalty of only 1.5 dB.This work was supported in part by the European project Plat4m (FP7-2012-318178); European project Cosmicc (H2020-ICT-27-2015- 688516); French Industry Ministry Nano2017 program.Pérez-Galacho, D.; Bramerie, L.; Baudot, C.; Chaibi, M.; Messaoudène, S.; Vulliet, N.; Vivien, L.... (2018). QPSK Modulation in the O-Band Using a Single Dual-Drive Mach Zehnder Silicon Modulator. Journal of Lightwave Technology. 36(18):3935-3940. https://doi.org/10.1109/JLT.2018.2851370S39353940361

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl

    Applications of multi-walled carbon nanotube in electronic packaging

    Get PDF
    Thermal management of integrated circuit chip is an increasing important challenge faced today. Heat dissipation of the chip is generally achieved through the die attach material and solders. With the temperature gradients in these materials, high thermo-mechanical stress will be developed in them, and thus they must also be mechanically strong so as to provide a good mechanical support to the chip. The use of multi-walled carbon nanotube to enhance the thermal conductivity, and the mechanical strength of die attach epoxy and Pb-free solder is demonstrated in this work

    Upgrade of Belle II Vertex Detector with CMOS Pixel Technology

    Full text link
    The Belle II experiment at KEK in Japan considers upgrading its vertex detector system to address the challenges posed by high background levels caused by the increased luminosity of the SuperKEKB collider. One proposal for upgrading the vertex detector aims to install a 5-layer all monolithic pixel vertex detector based on fully depleted CMOS sensors in 2027. The new system will use the OBELIX MAPS chips to improve background robustness and reduce occupancy levels through small and fast pixels. This causes better track finding, especially for low transverse momenta tracks. This text will focus on the predecessor of the OBELIX sensor, the TJ-Monopix2, presenting laboratory and test beam results on pixel response, efficiency, and spatial resolution.Comment: 8 pages, 8 figures, Proceedings for 24th international Workshop on Radiation Imaging Detectors,25-29 JUNE 20233 Osl
    corecore