798 research outputs found

    Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets

    Get PDF
    We estimate a flexible affine model using an unbalanced panel containing S&P 500 and VIX index returns and option prices and analyze the contribution of VIX options to the model’s in- and out-of-sample performance. We find that they contain valuable information on the risk-neutral conditional distributions of volatility at different time horizons, which is not spanned by the S&P 500 market. This information allows enhanced estimation of the variance risk premium. We gain new insights on the term structure of the variance risk premium, present a trading strategy exploiting these insights, and show how to improve S&P 500 return forecast

    Prehabilitation in elective patients undergoing cardiac surgery: a randomised control trial (THE PrEPS TRIAL) – a study protocol

    Get PDF
    Introduction: Prehabilitation prior to surgery has been shown to reduce postoperative complications, reduce length of hospital stay and improve quality of life after cancer and limb reconstruction surgery. However, there are minimal data on the impact of prehabilitation in patients undergoing cardiac surgery, despite the fact these patients are generally older and have more comorbidities and frailty. This trial will assess the feasibility and impact of a prehabilitation intervention consisting of exercise and inspiratory muscle training on preoperative functional exercise capacity in adult patients awaiting elective cardiac surgery, and determine any impact on clinical outcomes after surgery. Methods and analysis: PrEPS is a randomised controlled single-centre trial recruiting 180 participants undergoing elective cardiac surgery. Participants will be randomised in a 1:1 ratio to standard presurgical care or standard care plus a prehabilitation intervention. The primary outcome will be change in functional exercise capacity measured as change in the 6 min walk test distance from baseline. Secondary outcomes will evaluate the impact of prehabilitation on preoperative and postoperative outcomes including; respiratory function, health-related quality of life, anxiety and depression, frailty, and postoperative complications and resource use. This trial will evaluate if a prehabilitation intervention can improve preoperative physical function, inspiratory muscle function, frailty and quality of life prior to surgery in elective patients awaiting cardiac surgery, and impact postoperative outcomes. Ethics and dissemination: A favourable opinion was given by the Sheffield Research Ethics Committee in 2019. Trial findings will be disseminated to patients, clinicians, commissioning groups and through peer-reviewed publication

    Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how

    Get PDF
    The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished

    Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought

    Get PDF
    Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought

    Mycorrhizas and biomass crops: opportunities for future sustainable development

    Get PDF
    Central to soil health and plant productivity in natural ecosystems are in situ soil microbial communities, of which mycorrhizal fungi are an integral component, regulating nutrient transfer between plants and the surrounding soil via extensive mycelial networks. Such networks are supported by plant-derived carbon and are likely to be enhanced under coppiced biomass plantations, a forestry practice that has been highlighted recently as a viable means of providing an alternative source of energy to fossil fuels, with potentially favourable consequences for carbon mitigation. Here, we explore ways in which biomass forestry, in conjunction with mycorrhizal fungi, can offer a more holistic approach to addressing several topical environmental issues, including ‘carbon-neutral’ energy, ecologically sustainable land management and CO2 sequestration

    Land management shapes drought responses of dominant soil microbial taxa across grasslands

    Get PDF
    Soil microbial communities are dominated by a relatively small number of taxa that may play outsized roles in ecosystem functioning, yet little is known about their capacities to resist and recover from climate extremes such as drought, or how environmental context mediates those responses. Here, we imposed an in situ experimental drought across 30 diverse UK grassland sites with contrasting management intensities and found that: (1) the majority of dominant bacterial (85%) and fungal (89%) taxa exhibit resistant or opportunistic drought strategies, possibly contributing to their ubiquity and dominance across sites; and (2) intensive grassland management decreases the proportion of drought-sensitive and non-resilient dominant bacteria-likely via alleviation of nutrient limitation and pH-related stress under fertilisation and liming-but has the opposite impact on dominant fungi. Our results suggest a potential mechanism by which intensive management promotes bacteria over fungi under drought with implications for soil functioning
    corecore