108 research outputs found

    Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modellilng

    Get PDF
    Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s<SU-1</SU decrease seaward to around 4.5 km s<SU-1</SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel

    Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent-ocean transition, West Iberia: New insights from wide-angle seismic

    Get PDF
    Hyperextension of continental crust at the Deep Galicia rifted margin in the North Atlantic has been accommodated by the rotation of continental fault blocks, which are underlain by the S reflector, an interpreted detachment fault, along which exhumed and serpentinized mantle peridotite is observed. West of these features, the enigmatic Peridotite Ridge has been inferred to delimit the western extent of the continent‐ocean transition. An outstanding question at this margin is where oceanic crust begins, with little existing data to constrain this boundary and a lack of clear seafloor spreading magnetic anomalies. Here we present results from a 160 km long wide‐angle seismic profile (Western Extension 1). Travel time tomography models of the crustal compressional velocity structure reveal highly thinned and rotated crustal blocks separated from the underlying mantle by the S reflector. The S reflector correlates with the 6.0–7.0 km s−1 velocity contours, corresponding to peridotite serpentinization of 60–30%, respectively. West of the Peridotite Ridge, shallow and sparse Moho reflections indicate the earliest formation of an anomalously thin oceanic crustal layer, which increases in thickness from ~0.5 km at ~20 km west of the Peridotite Ridge to ~1.5 km, 35 km further west. P wave velocities increase smoothly and rapidly below top basement, to a depth of 2.8–3.5 km, with an average velocity gradient of 1.0 s−1. Below this, velocities slowly increase toward typical mantle velocities. Such a downward increase into mantle velocities is interpreted as decreasing serpentinization of mantle rock with depth

    Crustal structure of the Peruvian continental margin from wide-angle seismic studies

    Get PDF
    Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0–200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5–6.0 km s−1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure

    Report from the third international consensus meeting to harmonise core outcome measures for atopic eczema/dermatitis clinical trials (HOME).

    Get PDF
    This report provides a summary of the third meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in San Diego, CA, U.S.A., 6-7 April 2013 (HOME III). The meeting addressed the four domains that had previously been agreed should be measured in every eczema clinical trial: clinical signs, patient-reported symptoms, long-term control and quality of life. Formal presentations and nominal group techniques were used at this working meeting, attended by 56 voting participants (31 of whom were dermatologists). Significant progress was made on the domain of clinical signs. Without reference to any named scales, it was agreed that the intensity and extent of erythema, excoriation, oedema/papulation and lichenification should be included in the core outcome measure for the scale to have content validity. The group then discussed a systematic review of all scales measuring the clinical signs of eczema and their measurement properties, followed by a consensus vote on which scale to recommend for inclusion in the core outcome set. Research into the remaining three domains was presented, followed by discussions. The symptoms group and quality of life groups need to systematically identify all available tools and rate the quality of the tools. A definition of long-term control is needed before progress can be made towards recommending a core outcome measure

    Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling

    Get PDF
    The 26 December 2004 Sumatra earthquake (Mw = 9.1) initiated around 30 km depth and ruptured 1300 km of the Indo-Australian Sunda plate boundary. During the Sumatra OBS (ocean bottom seismometer) survey, a wide angle seismic profile was acquired across the epicentral region. A seismic velocity model was obtained from combined travel time tomography and forward modeling. Together with reflection seismic data from the SeaCause II cruise, the deep structure of the source region of the great earthquake is revealed. Four to five kilometers of sediments overlie the oceanic crust at the trench, and the subducting slab can be imaged down to a depth of 35 km. We find a crystalline backstop 120 km from the trench axis, below the fore arc basin. A high velocity zone at the lower landward limit of the raycovered domain, at 22 km depth, marks a shallow continental Moho, 170 km from the trench. The deep structure obtained from the seismic data was used to construct a thermal model of the fore arc in order to predict the limits of the seismogenic zone along the plate boundary fault. Assuming 100C-150C as its updip limit, the seismogenic zone is predicted to begin 530 km from the trench. The downdip limit of the 2004 rupture as inferred from aftershocks is within the 350C 450C temperature range, but this limit is 210-250 km from the trench axis and is much deeper than the fore arc Moho. The deeper part of the rupture occurred along the contact between the mantle wedge and the downgoing plate

    Fault-controlled hydration of the upper mantle during continental rifting

    Get PDF
    Water and carbon are transferred from the ocean to the mantle in a process that alters mantle peridotite to create serpentinite and supports diverse ecosystems1. Serpentinized mantle rocks are found beneath the sea floor at slow- to ultraslow-spreading mid-ocean ridges1 and are thought to be present at about half the world’s rifted margins2, 3. Serpentinite is also inferred to exist in the downgoing plate at subduction zones4, where it may trigger arc magmatism or hydrate the deep Earth. Water is thought to reach the mantle via active faults3, 4. Here we show that serpentinization at the rifted continental margin offshore from western Spain was probably initiated when the whole crust cooled to become brittle and deformation was focused along large normal faults. We use seismic tomography to image the three-dimensional distribution of serpentinization in the mantle and find that the local volume of serpentinite beneath thinned, brittle crust is related to the amount of displacement along each fault. This implies that sea water reaches the mantle only when the faults are active. We estimate the fluid flux along the faults and find it is comparable to that inferred for mid-ocean ridge hydrothermal systems. We conclude that brittle processes in the crust may ultimately control the global flux of sea water into the Earth

    Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints

    Get PDF
    Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions
    • 

    corecore