182 research outputs found

    Frequency noise cancellation in optomechanical systems for ponderomotive squeezing

    Full text link
    Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the MHz range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at lower spectral frequencies, for example in gravitational wave interferometers, despite being more sensitive to excess phase and frequency noise. Here we show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally in an optomechanical system formed by a Fabry-P\'{e}rot cavity with a micro-mechanical mirror.Comment: 11 pages, 9 figures. Physical explanation expanded. Modified figure

    Hospital food service: a comparative analysis of systems and introducing the ‘Steamplicity’ concept

    Get PDF
    Background Patient meals are an integral part of treatment hence the provision and consumption of a balanced diet, essential to aid recovery. A number of food service systems are used to provide meals and the Steamplicity concept has recently been introduced. This seeks, through the application of a static, extended choice menu, revised patient ordering procedures, new cooking processes and individual patient food heated/cooked at ward level, to address some of the current hospital food service concerns. The aim of this small-scale study, therefore, was to compare a cook-chill food service operation against Steamplicity. Specifically, the goals were to measure food intake and wastage at ward level; ‘stakeholders’ (i.e. patients, staff, etc.) satisfaction with both systems; and patients’ acceptability of the food provided. Method The study used both quantitative (self-completed patient questionnaires, n = 52) and qualitative methods (semi-structured interviews, n = 16) with appropriate stakeholders including medical and food service staff, patients and their visitors. Results Patients preferred the Steamplicity system overall and in particular in terms of food choice, ordering, delivery and food quality. Wastage was considerably less with the Steamplicity system, although care must be taken to ensure that poor operating procedures do not negate this advantage. When the total weight of food consumed in the ward at each meal is divided by the number of main courses served, at lunch, the mean intake with the cook-chill system was 202 g whilst that for the Steamplicity system was 282 g and for the evening meal, 226 g compared with 310 g. Conclusions The results of this small study suggest that Steamplicity is more acceptable to patients and encourages the consumption of larger portions. Further evaluation of the Steamplicity system is warranted. The purpose of this study was to directly compare selected aspects (food wastage at ward level; satisfaction with systems and food provided) of a traditional cook-chill food service operation against ‘Steamplicity’. Results indicate that patients preferred the ‘Steamplicty’ system in all areas: food choice, ordering, delivery, food quality and overall. Wastage was considerably less with the ‘Steamplicity’ system; although care must be taken to ensure that poor operating procedures do not negate this advantage. When the total weight of food consumed in the ward at each meal is divided by the number of main courses served, results show that at lunch, mean intake with the cook-chill system was 202g whilst that for the ‘Steamplicity’ system was 282g and for the evening meal, 226g compared with 310g

    Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. I. Parallel untwisted magnetic fields in 2D

    Get PDF
    Context. For the last thirty years, most of the studies on the relaxation of stressed magnetic fields in the solar environment have onlyconsidered the Lorentz force, neglecting plasma contributions, and therefore, limiting every equilibrium to that of a force-free field. Aims. Here we begin a study of the non-resistive evolution of finite beta plasmas and their relaxation to magnetohydrostatic states, where magnetic forces are balanced by plasma-pressure gradients, by using a simple 2D scenario involving a hydromagnetic disturbance to a uniform magnetic field. The final equilibrium state is predicted as a function of the initial disturbances, with aims to demonstrate what happens to the plasma during the relaxation process and to see what effects it has on the final equilibrium state. Methods. A set of numerical experiments are run using a full MHD code, with the relaxation driven by magnetoacoustic waves damped by viscous effects. The numerical results are compared with analytical calculations made within the linear regime, in which the whole process must remain adiabatic. Particular attention is paid to the thermodynamic behaviour of the plasma during the relaxation. Results. The analytical predictions for the final non force-free equilibrium depend only on the initial perturbations and the total pressure of the system. It is found that these predictions hold surprisingly well even for amplitudes of the perturbation far outside the linear regime. Conclusions. Including the effects of a finite plasma beta in relaxation experiments leads to significant differences from the force-free case

    Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. II. 2D magnetic X-points

    Full text link
    We provide a valid magnetohydrostatic equilibrium from the collapse of a 2D X-point in the presence of a finite plasma pressure, in which the current density is not simply concentrated in an infinitesimally thin, one-dimensional current sheet, as found in force-free solutions. In particular, we wish to determine if a finite pressure current sheet will still involve a singular current, and if so, what is the nature of the singularity. We use a full MHD code, with the resistivity set to zero, so that reconnection is not allowed, to run a series of experiments in which an X-point is perturbed and then is allowed to relax towards an equilibrium, via real, viscous damping forces. Changes to the magnitude of the perturbation and the initial plasma pressure are investigated systematically. The final state found in our experiments is a "quasi-static" equilibrium where the viscous relaxation has completely ended, but the peak current density at the null increases very slowly following an asymptotic regime towards an infinite time singularity. Using a high grid resolution allows us to resolve the current structures in this state both in width and length. In comparison with the well known pressureless studies, the system does not evolve towards a thin current sheet, but concentrates the current at the null and the separatrices. The growth rate of the singularity is found to be tD, with 0 < D < 1. This rate depends directly on the initial plasma pressure, and decreases as the pressure is increased. At the end of our study, we present an analytical description of the system in a quasi-static non-singular equilibrium at a given time, in which a finite thick current layer has formed at the null

    Why are flare ribbons associated with the spines of magnetic null points generically elongated?

    Get PDF
    Coronal magnetic null points exist in abundance as demonstrated by extrapolations of the coronal field, and have been inferred to be important for a broad range of energetic events. These null points and their associated separatrix and spine field lines represent discontinuities of the field line mapping, making them preferential locations for reconnection. This field line mapping also exhibits strong gradients adjacent to the separatrix (fan) and spine field lines, that can be analysed using the `squashing factor', QQ. In this paper we make a detailed analysis of the distribution of QQ in the presence of magnetic nulls. While QQ is formally infinite on both the spine and fan of the null, the decay of QQ away from these structures is shown in general to depend strongly on the null-point structure. For the generic case of a non-radially-symmetric null, QQ decays most slowly away from the spine/fan in the direction in which ∣B∣|{\bf B}| increases most slowly. In particular, this demonstrates that the extended, elliptical high-QQ halo around the spine footpoints observed by Masson et al. (Astrophys. J., 700, 559, 2009) is a generic feature. This extension of the QQ halos around the spine/fan footpoints is important for diagnosing the regions of the photosphere that are magnetically connected to any current layer that forms at the null. In light of this, we discuss how our results can be used to interpret the geometry of observed flare ribbons in `circular ribbon flares', in which typically a coronal null is implicated. We conclude that both the physics in the vicinity of the null and how this is related to the extension of QQ away from the spine/fan can be used in tandem to understand observational signatures of reconnection at coronal null points.Comment: Pre-print version of article accepted for publication in Solar Physic

    Overview of a paediatric renal transplant programme

    Get PDF
    No Abstract. South African Medical Journal Vol. 96(9) (Part 2) 2006: 955-95

    Effects of fieldline topology on energy propagation in the corona

    Get PDF
    We study the effect of photospheric footpoint motions on magnetic field structures containing magnetic nulls. The footpoint motions are prescribed on the photospheric boundary as a velocity field which entangles the magnetic field. We investigate the propagation of the injected energy, the conversion of energy, emergence of current layers and other consequences of the non-trivial magnetic field topology in this situation. These boundary motions lead initially to an increase in magnetic and kinetic energy. Following this, the energy input from the photosphere is partially dissipated and partially transported out of the domain through the Poynting flux. The presence of separatrix layers and magnetic null-points fundamentally alters the propagation behavior of disturbances from the photosphere into the corona. Depending on the field line topology close to the photosphere, the energy is either trapped or free to propagate into the corona.Comment: 14 pages, 15 figure

    Overview of a paediatric renal transplant programme

    Get PDF
    INTRODUCTION: Renal transplantation is the therapy of choice for children with end-stage renal failure. There are many challenges associated with a paediatric programme in a developing country where organs are limited. METHODS: A retrospective review was undertaken of 149 paediatric renal transplants performed between 1968 and 2006 with specific emphasis on transplants performed in the last 10 years. Survival of patients and grafts was analysed and specific problems related to drugs and infections were reviewed. RESULTS: On review of the total programme, 60% of the transplants have been performed in the last 10 years, with satisfactory overall patient and graft survival for the first 8 years post transplant. At this point, transfer to adult units with non-compliance becomes a significant problem. Rejection is less of a problem than previously but infection is now a bigger issue--specifically tuberculosis (TB), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections with related complications. A wide variety of drugs are available for tailoring immunosuppression to minimise side-effects. CONCLUSION: It is possible to have a successful paediatric transplant programme in a developing country. However, to improve long-term outcomes certain issues need to be addressed, including reduction of nephrotoxic drugs and cardiovascular risk factors and providing successful adolescent to adult unit transition

    Family presence during resuscitation: Validation of the risk–benefit and self-confidence scales for student nurses

    Get PDF
    © 2016, © The Author(s) 2016. Background. There is increasing debate about the advantages and disadvantages of family-witnessed resuscitation. Research about the views of healthcare providers depends upon reliable tools to measure their perceptions. Two tools have been developed for use with nurses (26-item cost-benefit tool, 17-item self-confidence tool). Objectives. Firstly, to validate these tools for use with student nurses in the UK. Secondly, to report on the perceived risks and benefits reported by student nurses, and their self-confidence in dealing with this situation. Methods. A sample of 79 student nurses were invited to complete the tools. Item-total correlations and Cronbach’s α were used to determine internal consistency. Factor analysis was computed to assess construct validity. The correlation between the two scales was explored. Results. 69 students completed a questionnaire. Very few had experience of family-witnessed resuscitation. Mean total scores were 3.16 (standard deviation 0.37; range 2.04–4.12) on the risk-benefit scale and 3.14 (standard deviation 0.66; range 1.94–4.82) on the self-confidence scale. Four of the original items were removed from the risk-benefit scale (Cronbach's α 0.86; 95% confidence interval ≥0.82). None were removed from the self-confidence scale (Cronbach's α 0.93; 95% confidence interval ≥0.91). There was a significant correlation between the two scales (r = 0.37, p = 0.002). Conclusions. There is growing evidence that these tools are valid and reliable for measuring student nurses’ perceptions about family-witnessed resuscitation

    3D MHD Coronal Oscillations About a Magnetic Null Point: Application of WKB Theory

    Full text link
    This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit's Method and a Runge-Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, B=(x,ϵy−(ϵ+1)z){\bf{B}}=(x,\epsilon y -(\epsilon +1)z). Under our cold plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfv\'en waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point, and that the effect of this refraction depends upon the Alfv\'en speed profile. The wave, and thus the wave energy, accumulates at the null point. We have found that current build up is exponential and the exponent is dependent upon ϵ\epsilon. Thus, for the fast wave there is preferential heating at the null point. For the Alfv\'en wave, we find that the wave propagates along the fieldlines. For an Alfv\'en wave generated along the fan-plane, the wave accumulates along the spine. For an Alfv\'en wave generated across the spine, the value of ϵ\epsilon determines where the wave accumulation will occur: fan-plane (ϵ=1\epsilon=1), along the x−x-axis (0<ϵ<10<\epsilon <1) or along the y−y-axis (ϵ>1\epsilon>1). We have shown analytically that currents build up exponentially, leading to preferential heating in these areas. The work described here highlights the importance of understanding the magnetic topology of the coronal magnetic field for the location of wave heating.Comment: 26 pages, 12 figure
    • …
    corecore