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ABSTRACT

Context. For the last thirty years, most of the studies on the relaxation of stressed magnetic fields in the solar environment have only
considered the Lorentz force, neglecting plasma contributions, and therefore, limiting every equilibrium to that of a force-free field.
Aims. Here we begin a study of the non-resistive evolution of finite beta plasmas and their relaxation to magnetohydrostatic states,
where magnetic forces are balanced by plasma-pressure gradients, by using a simple 2D scenario involving a hydromagnetic dis-
turbance to a uniform magnetic field. The final equilibrium state is predicted as a function of the initial disturbances, with aims to
demonstrate what happens to the plasma during the relaxation process and to see what effects it has on the final equilibrium state.
Methods. A set of numerical experiments are run using a full MHD code, with the relaxation driven by magnetoacoustic waves
damped by viscous effects. The numerical results are compared with analytical calculations made within the linear regime, in which
the whole process must remain adiabatic. Particular attention is paid to the thermodynamic behaviour of the plasma during the relax-
ation.
Results. The analytical predictions for the final non force-free equilibrium depend only on the initial perturbations and the total pres-
sure of the system. It is found that these predictions hold surprisingly well even for amplitudes of the perturbation far outside the
linear regime.
Conclusions. Including the effects of a finite plasma beta in relaxation experiments leads to significant differences from the force-free
case.
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1. Introduction

The magnetic field of the solar corona is believed to evolve
through a series of force-free states (Heyvaerts & Priest 1984).
Since the solar corona involves a low-beta plasma in which mag-
netic forces dominate over plasma forces, this is not an un-
reasonable assumption, and so, most of the recent studies on
the relaxation of coronal magnetic fields (e.g. Mackay & van
Ballegooijen 2006; Ji et al. 2007; Inoue et al. 2008; Janse & Low
2009; Miller et al. 2009; Pontin et al. 2009) have been done by
considering the approximation of an extremely tenuous plasma,
for which the plasma pressure does not play an important role,
and the persistent hydromagnetic structures of the solar corona
are assumed to be in magnetic balance, with zero pressure gra-
dients. On the other hand, only within the past few years, Ruan
et al. (2008) and Gary (2009) have started to consider the recon-
struction of the global coronal magnetic field including a finite
Lorentz force balanced by magnetic and gravity forces.

In addition, there are many codes available to calculate those
force-free fields from the observed magnetic field in the pho-
tosphere (Amari et al. 1998; Wiegelmann et al. 2006, 2008;
Schrijver et al. 2006; Metcalf et al. 2008). These codes have
been used with varying degrees of success to determine the
magnetic field of solar flares and active regions (e.g. De Rosa
et al. 2009; Schrijver et al. 2008; Régnier 2008; Wheatland
& Régnier 2009). However, problems remain with these ap-
proaches. In particular, a non-linear force-free field determined

from a line-of-sight photospheric magnetic field is not unique,
but is one of an infinite number of possible solutions. This fact
is well known and has been discussed by several authors (see
Low 2006).

Also, the low beta plasma assumption is only valid for the
solar corona, but is not valid in the photosphere, chromosphere
or much of the transition region where plasma effects become
more important. Furthermore, in the solar corona, the tenuous
plasma will be able to create a high beta in the surroundings of
a magnetic null point (McLaughlin & Hood 2006). Moreover,
even where the plasma has a low beta, there are still some ef-
fects on the final equilibrium of the magnetic field that will lead
to energetic consequences as the field is relaxing to its new equi-
librium state.

In particular, relaxation can involve the magnetic field evolv-
ing from a stressed state to a force-free field with a lower energy,
and for a consistent scenario where the energy cannot escape the
system, conservation of energy implies that the losses of mag-
netic energy must be converted into something else. Browning
et al. (2008) and Hood et al. (2009) investigated Taylor relax-
ation (Taylor 1974) through a series of non-linear 3D simula-
tions, initiated by an ideal MHD instability. Although the initial
state was force-free, the final state involved a high temperature
plasma with a significant value for the plasma beta. Placing aside
some extra contributions such as radiative losses, if a substantial
fraction of the magnetic energy released goes into the internal
energy, then the plasma beta cannot be small. Hence, considering
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the behaviour of the plasma is important even if it has little ef-
fect on the final magnetic equilibrium. On the other hand, Gary
(2001) suggested the possibility that there is high beta plasma in
the solar corona above active regions.

In this paper, we will start by considering a simple scenario,
with a uniform 2D magnetic field. There will be no current sheet
formation and no changes in the magnetic topology. The aim
of the paper is to investigate the relaxation of the hydromag-
netic fluid for various different values of the plasma beta. To
perturb the system, we introduce a local small enhancement (or
deficit) in the plasma pressure (or in the magnetic field), un-
der the frozen-in condition. The subsequent relaxation leads to a
new magnetohydrodynamic equilibrium in which the perturba-
tion has been dissipated by viscous forces acting on the flow.

It is worthwhile mentioning that relaxation via Ohmic
dissipation, due to the effect of resistivity, or magnetic diffusiv-
ity, represents a substantially different problem; While viscosity
dissipates the plasma velocity, diffusivity tends to eliminate the
electric current density, and such a relaxed state can only involve
potential fields, which are mathematically well defined and are
uniquely determined by the components of the magnetic field
normal to the boundaries. Furthermore, the time-scales for an
Ohmic relaxation in very high magnetic Reynolds number en-
vironments, such as the solar corona, are in general probably
larger than the age of the Sun itself, outwith regions with very
small length scales (see Priest 1982).

By considering the effects of the plasma pressure in the re-
laxation, we are facing a totally different problem from that of
the force-free relaxation studied by many others. In our non-
resistive MHD relaxation, the plasma displacements driven by
the initial pressure enhancement will carry the magnetic field
with them, generating an electric current and a magnetic pres-
sure. Hence, the resulting equilibrium will have to involve a
balance between the Lorentz force and the plasma-pressure
gradient.

The effects of including a finite plasma beta are relevant not
only in the high plasma beta regions of the solar atmosphere such
as the photosphere and chromosphere, but will also be relevant
in the solar corona. Obvious regions where the plasma beta is
likely to have a significant effect are in the vicinities of mag-
netic neutral points, where the magnetic field vanishes. These
configurations will be the subject of a further paper, while in
the present paper we study the plasma beta effects on the sim-
plest magnetic configuration, a uniform magnetic field, which is
absolutely general and might be compared with different solar
environments such as a region in a coronal prominence or part
of a coronal loop.

In Sect. 2, we first present the setup of the two-dimensional
linear problem. In Sects. 2.1 and 2.2, we solve the equations
for a one-dimensional vertical and horizontal perturbation, re-
spectively, and in Sect. 2.3 we obtain the whole solution from a
general two-dimensional linear perturbation, producing a prac-
tical and precise analytical solution to the problem. In Sect. 3,
we present a set of numerical experiments run using the Lare2D
code (Arber et al. 2001), and we compare these with the previous
analytical results. The effects of the non-linear terms are con-
sidered when the magnitude of the perturbation is increased, in
Sect. 4, followed by the summary and some conclusions which
are presented in Sect. 5.

2. Linear 2D equations

The initial set up involves a uniform magnetic field pointing in
the vertical y-direction, B0 = B0êy, and a background plasma

of a constant gas pressure, density and temperature. The ini-
tial disturbances are supposed to be small, in order to stay in
the linear regime. Expressing each quantity q(x, y, t) as the sum
of a background constant value plus a perturbation, q(x, y, t) =
q0 + q1(x, y, t), and substituting those expressions into the vis-
cous, non-resistive, two-dimensional MHD equations, with no
gravity force for simplicity, and neglecting terms involving prod-
ucts of perturbations, we obtain the following set of linearized
equations, in scalar form:

∂ρ1

∂t
= −ρ0∇ · u1, (1)

ρ0
∂vx
∂t
= −∂p1

∂x
− B0

μ0

∂By
∂x
+

B0

μ0

∂Bx

∂y
+ρ0ν

(
∇2vx+

1
3
∂

∂x
(∇·u1)

)
, (2)

ρ0
∂vy

∂t
= −∂p1

∂y
+ ρ0ν

(
∇2vy +

1
3
∂

∂y
(∇ · u1)

)
, (3)

∂p1

∂t
= −γp0∇ · u1, (4)

∂Bx

∂t
= B0

∂vx

∂y
, (5)

∂By
∂t
= −B0

∂vx
∂x
, (6)

where ρ0, p0 and B0 are the constant background plasma den-
sity, plasma pressure and magnetic field, ν is the kinematic vis-
cosity, ρ1, p1 and u1 are the perturbations on plasma density,
plasma pressure and velocity, and vx, vy, Bx and By are the x and
y components of the perturbed velocity and perturbed magnetic
field, respectively. Also, the plasma pressure, p, density, ρ, and
internal energy, ε, are related by the perfect gas law, for an ideal
polytropic gas,

p = ρε(γ − 1), (7)

where γ is the ratio of specific heats, often assumed to be 5/3 for
a highly ionised hydrogen plasma.

In a general scheme, viscosity would add a heating term to
the energy equation, but this term is second order, and so, the
process is adiabatic within the linear regime, and there is no heat-
ing of any kind taking place. Hence, the entropy per unit mass,
S = p/ργ, is conserved, for each single fluid element, and for
the entire box.

From the conservation of entropy, a relation between the
plasma pressure and density perturbations may be obtained,
within first order (i.e. neglecting the terms involving products
of perturbations):

p0 + p1

(ρ0 + ρ1)γ
=

p0

ρ
γ
0

(
1 +

p1

p0
− γρ1

ρ0

)
= const.

Hence,

Δp1

p0
− γΔρ1

ρ0
= 0,

where Δ indicates the difference between final and initial state of
the perturbation, such that

Δp1 = c2
sΔρ1, (8)

where cs =
√
γp0/ρ0 is the sound speed.

To solve these equations, we first determine the solution
for a one-dimensional perturbation, which depends only on x
(Sect. 2.1), then only on y (Sect. 2.2), and finally, using the 1D
results, we derive the solution for a more general 2D perturba-
tion (Sect. 2.3).
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2.1. Perturbation dependent on x

Consider a perturbation varying only in the direction perpendic-
ular to the magnetic field lines, x. The magnetic field vector will
have a non-zero y-component, B1(x, t) = By(x, t)êy, while the
velocity will have a non-zero x-component, u1(x, t) = vx(x, t)êx.
Equations (1) to (6) reduce to

∂ρ1

∂t
= −ρ0

∂vx
∂x
, (9)

ρ0
∂vx
∂t
= −∂pT

∂x
+ ρ0ν

′ ∂
2vx

∂x2
, (10)

∂p1

∂t
= −γp0

∂vx
∂x
, (11)

∂By
∂t
= −B0

∂vx
∂x
, (12)

with ν′ = 4ν/3, where ν is the kinematic viscosity, and pT is the
perturbed total pressure, given by

pT = p1 +
B0By
μ0
· (13)

The equation governing the final equilibrium state can be ob-
tained using Eq. (10). At equilibrium, the time dependence dis-
appears, and the velocity is zero, thus, the equilibrium must have
constant total pressure:

∂pT

∂x
= 0. (14)

Combining Eqs. (11) and (12), we get the evolution of the total
pressure as

1
ρ0

∂pT

∂t
= −(c2

s + c2
A)
∂vx
∂x
, (15)

where cs is the sound speed, defined above, and cA = B0/
√
μ0ρ0

is the Afvén speed. By the appropiate combination of Eqs. (10)
and (15) we get the wave equation for fast magneto-acoustic
waves for the total pressure:

∂2 pT

∂t2
= (c2

s + c2
A)
∂2 pT

∂x2
+ ν′
∂

∂t

(
∂2 pT

∂x2

)
· (16)

Assuming that the total pressure can be considered as a contin-
uous, periodic function, the solution of the last equation can be
expressed as a superposition of plane waves, such as

pT(x, t) = Re

⎛⎜⎜⎜⎜⎜⎝
∑

k

ϕkei(kx−ωt)

⎞⎟⎟⎟⎟⎟⎠ , (17)

where each wave number k corresponds to a different oscillation
mode and is associated with a complex frequency ω(k) given by
the dispersion relation,

ω2 + ik2ν′ω − (c2
s + c2

A)k2 = 0.

The dispersion relation has the solution ω = a − bi, where a is
the real frequency of the wave, and b is the damping term:

a =
k
2

√
4(c2

s + c2
A) − k2ν′2,

b =
1
2

k2ν′.

In order to have a harmonic mode, the wave number k must sat-
isfy k2ν′2 < 4(c2

s + c2
A), and higher modes will be damped with-

out any type of oscillation. On the other hand, notice that ω = 0

when k = 0. The undamped mode k = 0 corresponds to the con-
stant Fourier coefficient in the expansion of Eq. (17), which does
not change in time, and is given by Fourier analysis as the homo-
geneous redistribution of the initial total pressure to its average
value. As t → ∞, it is only this constant that remains, as all the
other terms are proportional to e−bt. Hence, this homogeneous
redistribution is exactly the constant perturbed total pressure that
defines our final equilibrium state:

pT(∞) =
1
Lx

∫
x

(
p1(x, 0) +

B0By(x, 0)

μ0

)
dx, (18)

where Lx is the length of the x-domain.
From the solution of Eq. (16), and Eq. (15), we obtain an ex-

pression for v1(x, t), which, after substitution into Eqs. (9), (11)
and (12), gives

∂ρ1

∂t
=

1

c2
s + c2

A

∂pT

∂t
, (19)

∂p1

∂t
=

c2
s

c2
s + c2

A

∂pT

∂t
, (20)

∂By
∂t
=

B0

ρ0(c2
s + c2

A)

∂pT

∂t
· (21)

Integrating now from t = 0 to t = ∞, we obtain the perturbed
quantities for the final equilibrium state, as functions of the per-
turbed total pressure, to be added to the background values:

ρ1(x) = ρ1(x, 0) +
1

c2
s + c2

A

(pT(∞) − pT(x, 0)), (22)

p1(x) = p1(x, 0) +
c2

s

c2
s + c2

A

(pT(∞) − pT(x, 0)), (23)

By(x) = By(x, 0) +
B0

ρ0(c2
s + c2

A)
(pT(∞) − pT(x, 0)). (24)

Equations (22)–(24) state that no matter how we set our initial
disturbance, the final equilibrium distributions are completely
determined by the initial and the final total pressures of the sys-
tem, which are given by the solution of the wave equation. Note,
that also the adiabatic equation for the linear regime given in
Eq. (8) is satisfied.

2.2. Perturbation dependent on y

In the same way as above, we can get the solution for a pertur-
bation varying only along the field. This time, we are dealing
with a purely non-magnetic evolution, that will lead to a homo-
geneous redistribution of the plasma pressure all along the field
lines. The equations to solve are the y-components of Eqs. (1),
(3) and (4). The equilibrium is now given by

∂p1

∂y
= 0, (25)

and the solution for the perturbed quantities is

p1(∞) =
1
Ly

∫
y

p1(y, 0) dy, (26)

ρ1(y) = ρ1(y, 0) +
1

c2
s

(p1(∞) − p1(y, 0)), (27)

where Ly is the length of the y-domain.
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2.3. Two-dimensional perturbation

In this section, we study the relaxation of a general individ-
ual two-dimensional perturbation within the linear regime. Once
again, setting the velocities to zero, we get the equations govern-
ing the final 2D equilibrium:

∂

∂x

(
p1 +

B0By
μ0

)
− B0

μ0

∂Bx

∂y
= 0, (28)

∂p1

∂y
= 0. (29)

Equation (29) tells us that the final plasma pressure cannot de-
pend on y, so the solution for the pressure must remain one-
dimensional, as before. On the other hand, Eq. (28) does not have
a direct interpretation, as both spatial derivatives are involved.
The term p1 + B0By/μ0 represents the perturbed total pressure
from Sect. 2.1, and the new term B0Bx/μ0 represents the mag-
netic tension due to the curvature of the field lines, which was
zero in the 1D cases. As usual, when looking for a periodic solu-
tion, Fourier analysing makes life much simpler: Expressing our
variables as functions of ei(kx+ly−ωt), where each pair (k, l) repre-
sents one single mode of oscillation in the global time evolution,
Eqs. (28) and (29) can be rewriten as

k

(
p1 +

B0By
μ0

)
− l

B0Bx

μ0
= 0,

l p1 = 0,

where:

i. The mode k = 0, l = 0 represents the unperturbed back-
ground values.

ii. For k � 0, l = 0, the equation of the equilibrium is

∂

∂x
(p1 + B0By) = 0. (30)

These modes only depend on x, and represent the homoge-
neous redistribution of the total pressure studied in Sect. 2.1.

iii. For k = 0, l � 0 we get

∂p1

∂y
= 0, (31)

∂Bx

∂y
= 0. (32)

These modes do not modify By, instead they simply remove
both the vertical gradients of magnetic tension and plasma
pressure as in Sect. 2.2. Each of them is treated individually,
as they are not coupled in the equations.

iv. Finally, for those modes with k � 0, l � 0, we get

kBy − lBx = 0,

which can be combined with the solenoidal condition for the
magnetic field, ∇ · B = 0, or, within our fourier notation,

kBy + lBx = 0.

From these equations, we can conclude that, in the final equi-
librium, the existance of a variation of By in the x-direction is
totally incompatible with a variation of Bx in the y-direction.
Hence, the modes with both wave numbers k and l non-zero
may appear in the dynamical evolution, but not in the final
equilibrium distributions.

Therefore, with our uniform background magnetic field point-
ing straight in the vertical y-direction, the final equilibrium state
is a combination of the background values (k = 0, l = 0),
plus the vertical non-magnetic evolution to a state with plasma
pressure that is constant along y, and/or the smoothing of the
horizontal component of the magnetic field (k = 0), plus the
one-dimensional hydromagnetic evolution across the field lines
(l = 0). Note, that the perturbed Bx in the vertical direction (i.e.
curved magnetic field) is not coupled with either p1 or By, so
the final magnetic field remains as straight lines, and Bx is not
involved in the evolution of the total pressure of the system.

Hence, we calculate the analytical 2D equilibrium in
two steps: Firstly, the non-magnetic evolution in the vertical
direction,

p∗1(x) =
1
Ly

∫
y

p1(x, y, 0) dy, (33)

ρ∗1(x, y) = ρ1(x, y, 0) +
1

c2
s

(p∗1(x) − p1(x, y, 0)), (34)

and secondly, the hydromagnetic evolution in the horizontal di-
rection, across the field,

ρ1(x, y) = ρ∗1(x, y) +
1

c2
s + c2

A

(pT(∞) − p∗T(x)), (35)

p1(x, y) = p∗1(x) +
c2

s

c2
s + c2

A

(pT(∞) − p∗T(x)), (36)

By(x, y) = By(x, 0) +
B0

ρ0(c2
s + c2

A)
(pT(∞) − p∗T(x)). (37)

In Eqs. (33) to (37) the quantities with a superscript
represent the state after the vertical evolution, with
p∗T(x) = p∗1(x) + B0By(x, 0)/μ0.

Looking back at the equations, we see a well known result
from magnetohydrostatics, namely: In equilibrium, and in the
absence of gravity, the plasma pressure must be constant along
the field lines. The constant plasma pressure in the y-direction
given by Eq. (29) is aligned with the straight magnetic configu-
ration, with no magnetic tension, for the final equilibrium state.

When analyzing the validity of the results above for a non-
ideal experiment, it is important to remember that Eqs. (34)
to (37) come from the linear approximation, but Eq. (33) does
not. Hence, we expect our analytical calculations for the pres-
sure to hold for much larger initial perturbations than the ones
for the density. If the initial pressure disturbance is not small,
but the linear expression for the plasma pressure is still valid, the
adiabatic condition (i.e. conservation of entropy), which is more
robust than the linear calculations, gives us a better approxima-
tion for the final equilibrium plasma density, calculated as

ρ(x, y, t→ ∞) =

(
p(x, y, t→ ∞) ργ(x, y, t = 0)

p(x, y, t = 0)

)1/γ

· (38)

3. Numerical experiments

To investigate the validity of the analytical results, we have
used Lare2D, a staggered Lagrangian-remap code with user con-
trolled viscosity, to solve the full MHD equations, with the re-
sistivity set to zero (for further details, see Arber et al. 2001).
The numerical domain is a square box with a uniform grid of
256×256 points. The background magnetic field is pointing in
the vertical y-direction and all the perturbations depend on both
x and y. The top and bottom boundaries of the box are periodic,
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so that the field lines are not line-tied. The boundaries on the left
and right sides are closed. The choice of either closed or periodic
side boundaries makes no difference for our experiments. There
is neither mass nor energy flowing across the side boundaries.

The numerical code uses the normalised MHD equations,
where the normalised magnetic field, density and lengths,

x = Lx̂, y = Lŷ, B = BnB̂, ρ = ρnρ̂,

imply that the normalising constants for pressure, internal en-
ergy and current density are

pn =
B2

n

μ0
, εn =

B2
n

μ0ρn
and jn =

Bn

μ0L
·

We have used here the subscript n for the normalising constants,
instead of 0, to avoid confusion with the initial background
values. The hat quantities are the dimensionless variables with
which the code works. The expression for the plasma beta can
be obtained from this normalisation as

β =
2 p̂

B̂2
=

2ρ̂ε̂(γ − 1)

B̂2
· (39)

The initial disturbance consists of an internal energy and pres-
sure enhancement, leaving the initial plasma density and mag-
netic field undisturbed. The perturbation is taken as a single
two-dimensional Gaussian centered in the middle of the box:

ε1(x, 0) = a exp

(
− (x − b)2

2c2

)
exp

(
− (y − b)2

2c2

)
, (40)

with b = 0.5L and c = 0.05L. As there is no initial perturbation
of the magnetic field, the initial perturbed total pressure is just
the perturbed plasma pressure, and the final analytical perturbed
total pressure is the average value of that initial perturbed plasma
pressure distribution, so that

pT(∞) − p∗T(x) =
∫

x

(∫
y

p1(x, y, 0) dy

)
dx −

∫
y

p1(x, y, 0) dy.

For the experiment shown here, we have chosen a rather large
perturbation, of the same order as the background value, i.e. a =
ε0, for which one may expect linear theory not to be applicable.
The background plasma beta is 0.2.

Figure 1 shows the time evolution of the various energies of
the system, integrated over the whole box. Kinetic energy (in
green) grows quickly from zero to its maximum value, and is
subsequently damped to zero in the final equilibrium. A small
fraction of the internal energy is converted into magnetic energy
at the new equilibrium. For this particular set up, in which the
perturbation has been introduced in the plasma pressure, it is the
plasma that loses some of its initial internal energy, transfering it
to the magnetic field. Note, that the amount of energy transfered
is directly proportional to the magnitude of the perturbation. The
total energy (i.e. the sum of the magnetic, kinetic and internal
energies) is conserved to an accuracy of ∼10−7.

The 2D contour plots of the normalised plasma pressure,
density and perpendicular current density for the initial and final
equilibrium state are shown in Fig. 2 for this case. The initial in-
crease of plasma pressure creates a localized decrease in plasma
density. The displacement of the magnetic field lines is hard to
appreciate from the field lines themselves, but is clear from the
non-zero perpendicular electric current density, jz, that exists in
the final equilibrium.

Figures 3 and 4 show vertical cuts at x = L/2 and horizontal
cuts at y = L/2, respectively, through the contour plots in Fig. 2,

Fig. 1. Time evolution of the energies for the case where max(p1) =
p0 = 0.1B2

n/μ0 and β = 0.2, integrated over the whole 2D box. The four
evolutions have been shifted in the vertical axis by substracting the con-
stant values 0, 0.5, 0.15 and 0.65, respectively, for kinetic, magnetic, in-
ternal and total energy, but their relative amplitudes are not scaled. The
final losses of internal energy are entirely balanced with a net increase
of magnetic energy. The top figure is logarithmic in time and covers the
whole relaxation. The bottom figure is linear in time and only covers the
first part of the relaxation. From this graph, we can appreciate the com-
plex oscillation periods, which are products of the sum of the different
plane waves that drive the relaxation.

for the relevant quantities for the initial and final state. In these
plots, a detailed comparison of the numerical and analytical so-
lutions can be made. The analytical predictions for total pressure
are very good, even though the amplitude of the perturbation is
relatively large (a = ε0) and so, strictly speaking, our analytical
approximation should not hold. However, the linear approxima-
tion for the plasma density (red crosses in Figs. 3 and 4) does
not fit well. Instead, if we use Eq. (38), a much better fit for
the plasma density is found (blue crosses in the plots), implying
that the process is approximately adiabatic. Since the numerical
experiments have been performed using a full MHD code that
solves the non-linear equations, the process is not entirely adia-
batic, but must have a finite amount of viscous heating that will
become important as the initial perturbation is increased.

4. Importance of non-linear effects

To study how non-linearity affects the results as the magnitude
of the initial perturbation increases, we focus again on the total
pressure. The total pressure of the final numerical equilibrium
must be constant, whether the relaxation remains in the linear
regime or not. On the other hand, the analytical definition of to-
tal pressure given by (13) is an approximation from the linear
analysis, and will become less valid as the non-linear terms be-
come more important. We perform a series of experiments for
various plasma beta values in which the relative amplitude of
the initial perturbation is changed from a very small value, well
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Fig. 2. Two-dimensional contour plots of plasma pressure (top), plasma
density (center) and current density (bottom) in the initial state (left
column) and final equilibrium (right column), for the same experiment
as Fig. 1.

within the linear regime, to a large value way outside it. Using
these experiments, we investigate how the final total pressure de-
parts from the linear predictions for different background plasma
beta values.

But first, we recall that the 2D relaxation may be separated
into a vertical non-magnetic evolution (vertical redistribution of
plasma pressure) and a horizontal evolution (horizontal redistri-
bution of total pressure), in which the total pressure in the ver-
tical case is not determined by the linear analysis. This suggests
that, effectively, in order to find a significant error in the final
total pressure for the 2D experiment, we will need very large val-
ues of the initial two-dimensional perturbation. Hence, the fol-
lowing experiments have been made for just a one-dimensional
perturbation across the field lines. These results may be mapped
onto those for our intital 2D perturbation, using the following:
(

max(p1)
p0

)
2D

=
L∫

y
exp

(−(y − b)2/2c2
)

dy

(
max(p1)

p0

)
1D

·

Figure 5 shows the relative error of the linear aproximation in
both 1D and 2D for the total pressure, as a function of the am-
plitude of the initial perturbation, for five different values of the
plasma beta (β = 0.05, β = 0.1, β = 0.2, β = 1.3 and β = 2).
The bottom x-axis shows the magnitude of the one-dimensional
perturbation, and the top x-axis shows the magnitude of the ini-
tial two-dimensional perturbation before its vertical expansion.
The error on the y-axis is calculated as the maximum difference
between the linear prediction and the numerical results for the
total pressure,

max(|plin
T − pnum

T |)
pnum

T

,

Fig. 3. Vertical cuts for the plasma pressure (left) and plasma density
(right), for the same experiment as Figs. 1 and 2. Initial perturbed state
(dashed) is compared with the final equilibrium, as found by the full
MHD numerical simulations (solid) and predicted by the linear analy-
sis (red crosses). For the density predictions, the blue crosses represent
predictions from the adiabatic condition given by Eq. (38).

Fig. 4. Horizontal cuts for the plasma pressure (top left), plasma den-
sity (top right), total pressure (bottom left) and magnetic field strength
(bottom left), for the same experiment as Figs. 1, 2 and 3.

where pnum
T is the final constant total pressure obtained from

the numerical simulations, and, for our non-magnetic initial
perturbation,

plin
T (x) = p0 + p1(x,∞) +

B2
0

2μ0
+

B0By(x,∞)

μ0
,

with p1(x,∞) and By(x,∞) being the final perturbed plasma
pressure and perturbed magnetic field from the numerical
simulations.

As β → ∞, we expect the relative error of the linear anal-
ysis to tend to zero, independently of the perturbation, as in
this case, the magnetic effects dissapear, and the initial pressure
perturbation completely redistributes to a well defined constant
value in the whole box. On the other hand, if β 
 1, then the
magnetic field will dominate over the plasma contributions, and
much larger values for the relative initial perturbation will be
needed for strictly leaving the linear regime. These two behav-
iors can be seen in Fig. 5, where the plots for large plasma-betas
tend to a smaller error, while the plots for small plasma-betas
take longer to reach significant errors, i.e. to escape from the
linear regime. Furthermore, we must not forget that we are here
only talking about the initial background plasma beta, so a large
background beta combined with a large initial perturbation will
make the final plasma beta even higher. Thus, max(p1)/p0 → ∞
will imply β → ∞ for the final equilibrium, so we expect the
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Fig. 5. Relative error in the linear prediction of the total pressure against
the magnitude of the initial pressure perturbation, for five different val-
ues of the plasma beta. The slow growth rate of the error (non-linear
effects) indicates the validity of the linear analysis studied in this paper.

curves of the relative error of the linear analysis to turn back to
zero as the initial perturbation is greatly increased. In terms of
energy conservation, as the velocity is zero at the initial and final
states, the integral over the whole domain of internal energy plus
magnetic energy must be conserved: if β→ ∞, then the internal
energy is much larger than the magnetic energy, and will just re-
distribute the plasma pressure, without transferring any energy
into the magnetic field.

On the contrary, the final plasma density is entirely deter-
mined by the linear analysis, in both the vertical and the hori-
zontal evolutions along and across the field lines, or in a better
approximation, by the adiabatic condition. Hence, the non-linear
effects for the plasma density will grow much quicker, as shown
in Fig. 6. These last numerical experiments have been made for
the original two-dimensional Gaussian perturbation. The error
on the y-axis is given by

max(ρad − ρnum)
ρnum

,

where ρad is the plasma density given by Eq. (38), and ρnum is
the final density obtained with the numerical experiments.

The relative error in the plasma density is considerably big-
ger than the relative error in pressure, and so, for only a small
change in p1/p0 in the 2D case, we find a large error in ρ. As this
error quickly reaches significant values, the plasma beta plays
much less of a role for the non-linear effects in the plasma den-
sity than in the above total pressure.

5. Summary and conclusions

We have presented analytical and numerical calculations for the
2D magnetohydrodynamic relaxation of an untwisted perturbed
magnetic system embedded in a plasma with beta of any size,
and find a final equlibrium state which differs substantially from
the initial background configuration. The equilibrium reached
is a non force-free state in which the plasma pressure gradients

Fig. 6. Relative error of the density predicted assuming an adiabatic evo-
lution, with Eq. (38), against the magnitude of the 2D initial pressure
perturbation, for three values of the plasma beta. Note, that the x-axis
in this plot is to be compared with the top x-axis in Fig. 5.

are balanced by the magnetic Lorentz force. For a set of speci-
fied boundaries, all the hydromagnetic quantities are fully deter-
mined by the initial perturbed state.

The initial disturbance evolves into the final relaxed state
by different families of magnetoacoustic waves, dissipated via
viscous damping. Fast magnetoacoustic waves propagate across
the field lines in the horizontal direction, slow magnetoacoustic
waves redistribute the thermodynamic quantities along the field
in the vertical direction, and an extra contribution of slow mag-
netoacoustic waves propagates along the magnetic field lines in-
troducing a magnetic tension term. Nevertheless, these last slow
magnetoacoustic waves dissipate the magnetic tension in such
a way that it is totally unimportant when determining the fi-
nal equilibrium distributions. The vertical redistribution of the
plasma pressure to a homogeneous value demands the magnetic
tension to dissapear completely, so both the plasma pressure and
total pressure are one-dimensional at the end of the process.

Within the linear regime, the final distributions are com-
pletely independent of the viscosity, even though it is required
to permit the relaxation to ocurr, as it is the only damping mech-
anism of the waves. An increase in the viscosity enhances the
diffusive term in the wave equation, and so, accelerates the pro-
cess, but the final distribution is not modified. Instead, in the
final equilibrium, all the quantities are simply determined by
the behaviour of the final equilibrium total pressure, involving
plasma and magnetic effects. Hence, the final equilibrium states
for plasma pressure and magnetic field do not differ if the initial
perturbation is of the density, temperature or internal energy.

Finally, by investigating the linear regime, we have been able
to make analytical predictions for the final MHS equilibrium,
even when the regime is far from linear. The linear predictions
remain remarkably valid even outside the linear regime, as the
growth rate of the non-ideal effects is very small, compared to
the initial perturbations.

In this paper, the introduction of plasma effects in the re-
laxation of hydromagnetic systems have been studied in simple
schemes, producing a series of analytical predictions which have
been confirmed by our numerical results. By starting with a uni-
form magnetic field, we have reached a state in which the mag-
netic field itself remains almost uniform, but where some current
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density has been built. Also, even in this simple configuration,
a non-neglectible amount of energy has been transferred from
the plasma to the magnetic field. These implications of energy
transfer during the relaxation process indicate that this pro-
cess will be of importance in the solar corona, specially in the
study of magnetic null points and their surroundings. Null points
have been found to have a reasonable population density in the
Solar Corona by Longcope & Parnell (2009). In further stud-
ies, we will consider more complex scenarios, introducing two-
dimensional null points and starting to consider the implica-
tions of non-zero plasma betas in three-dimensional magnetic
environments.
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