174 research outputs found

    Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (<it>RS</it>)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors <it>in vitro</it>, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice.</p> <p>Methods</p> <p>One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months.</p> <p>Results</p> <p>Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field <it>ex vivo </it>diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups.</p> <p>Conclusion</p> <p>Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.</p

    Quantum Simulation of Tunneling in Small Systems

    Full text link
    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure

    Does smoking among friends explain apparent genetic effects on current smoking in adolescence and young adulthood?

    Get PDF
    We used data from a prospective cohort study of twins to investigate the influence of unmeasured genetic and measured and unmeasured environmental factors on the smoking behaviour of adolescents and young adults. Twins were surveyed in 1988 (aged 11–18 years), 1991, 1996 and 2004 with data from 1409, 1121, 732 and 758 pairs analysed from each survey wave, respectively. Questionnaires assessed the smoking behaviour of twins and the perceived smoking behaviour of friends and parents. Using a novel logistic regression analysis, we simultaneously modelled individual risk and excess concordance for current smoking as a function of zygosity, survey wave, parental smoking and peer smoking. Being concordant for having peers who smoked was a predictor of concordance for current smoking (P<0.001). After adjusting for peer smoking, monozygotic (MZ) pairs were no more alike than dizygotic pairs for current smoking at waves 2, 3 and 4. Genetic explanations are not needed to explain the greater concordance for current smoking among adult MZ pairs. However, if they are invoked, the role of genes may be due to indirect effects acting through the social environment. Smoking prevention efforts may benefit more by targeting social factors than attempting to identify genetic factors associated with smoking

    Comparative genomics of Cluster O mycobacteriophages

    Get PDF
    Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange

    Herbivore Preference for Native vs. Exotic Plants: Generalist Herbivores from Multiple Continents Prefer Exotic Plants That Are Evolutionarily Naïve

    Get PDF
    Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4–17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp.) preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa) occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of non-native herbivores (which commonly prefer native plants), or both

    General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales

    Get PDF
    Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities

    Comparative assessment of phototherapy protocols for reduction of oxidative stress in partially transected spinal cord slices undergoing secondary degeneration

    Get PDF
    Background: Red/near-infrared light therapy (R/NIR-LT) has been developed as a treatment for a range of conditions, including injury to the central nervous system (CNS). However, clinical trials have reported variable or sub-optimal outcomes, possibly because there are few optimized treatment protocols for the different target tissues. Moreover, the low absolute, and wavelength dependent, transmission of light by tissues overlying the target site make accurate dosing problematic. Results: In order to optimize light therapy treatment parameters, we adapted a mouse spinal cord organotypic culture model to the rat, and characterized myelination and oxidative stress following a partial transection injury. The ex vivo model allows a more accurate assessment of the relative effect of different illumination wavelengths (adjusted for equal quantal intensity) on the target tissue. Using this model, we assessed oxidative stress following treatment with four different wavelengths of light: 450 nm (blue); 510 nm (green); 660 nm (red) or 860 nm (infrared) at three different intensities: 1.93 × 10¹⁶ (low); 3.85 × 10¹⁶ (intermediate) and 7.70 × 10¹⁶ (high) photons/cm²/s. We demonstrate that the most effective of the tested wavelengths to reduce immunoreactivity of the oxidative stress indicator 3-nitrotyrosine (3NT) was 660 nm. 860 nm also provided beneficial effects at all tested intensities, significantly reducing oxidative stress levels relative to control (p ≤ 0.05). Conclusions: Our results indicate that R/NIR-LT is an effective antioxidant therapy, and indicate that effective wavelengths and ranges of intensities of treatment can be adapted for a variety of CNS injuries and conditions, depending upon the transmission properties of the tissue to be treated.12 page(s

    Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships.

    Get PDF
    A lack of empirical evidence for the microbial regulation of ecosystem processes, including carbon (C) degradation, hinders our ability to develop a framework to directly incorporate the genetic composition of microbial communities in the enzyme-driven Earth system models. Herein we evaluated the linkage between microbial functional genes and extracellular enzyme activity in soil samples collected across three geographical regions of Australia. We found a strong relationship between different functional genes and their corresponding enzyme activities. This relationship was maintained after considering microbial community structure, total C and soil pH using structural equation modelling. Results showed that the variations in the activity of enzymes involved in C degradation were predicted by the functional gene abundance of the soil microbial community (R2&gt;0.90 in all cases). Our findings provide a strong framework for improved predictions on soil C dynamics that could be achieved by adopting a gene-centric approach incorporating the abundance of functional genes into process models

    Comparison of Therapeutic Effects between Pulsed and Continuous Wave 810-nm Wavelength Laser Irradiation for Traumatic Brain Injury in Mice

    Get PDF
    Background and Objective Transcranial low-level laser therapy (LLLT) using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI). In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI. Study Design/Materials and Methods TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm2 for 12-minutes giving a fluence of 36-J/cm2. Neurological severity score (NSS) and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test. Results The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests. Conclusion The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.National Institutes of Health (U.S.) (NIH grant R01AI050875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs (W81XWH-09-1-0514)United States. Air Force Office of Scientific Research (Military Photomedicine Program (FA9950-04-1-0079))Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of Scienc

    Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus

    Get PDF
    Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated
    corecore