25 research outputs found

    Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level

    Get PDF
    European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1dup, aqpe), stress response (hsp70, hsp90), and thyroid metabolism (thrαA, thrαB, thrβB, dio1, dio2, dio3) were differentially expressed throughout larval development, while nkcc1α, nkcc2β, aqp3, aqp1dup, aqpe, hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely facilitated the observed increased survival, improved biometry and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as spinal curvature and emaciation but also induced an edematous state of the larval heart, resulting in the most balanced mortality/deformity ratio when salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericardial edema and if or how it represents an obstacle in further larval development needs to be further clarified. In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development and revealed the existence of highly sensitive and regulated osmoregulation processes at such early life stage of this species

    Molecular ontogeny of larval immunity in European eel at increasing temperatures

    Get PDF
    Temperature is a major factor that modulates the development and reactivity of the immune system. Only limited knowledge exists regarding the immune system of the catadromous European eel, Anguilla anguilla, especially during the oceanic early life history stages. Thus, a new molecular toolbox was developed, involving tissue specific characterisation of 3 housekeeping genes, 9 genes from the innate and 3 genes from the adaptive immune system of this species. The spatial pattern of immune genes reflected their function, e.g. complement component c3 was mainly produced in liver and il10 in the head kidney. Subsequently, the ontogeny of the immune system was studied in larvae reared from hatch to first-feeding at four temperatures, spanning their thermal tolerance range (16, 18, 20, and 22 °C). Expression of some genes (c3 and igm) declined post hatch, whilst expression of most other genes (mhc2, tlr2, il1β, irf3, irf7) increased with larval age. At the optimal temperature, 18 °C, this pattern of immune-gene expression revealed an immunocompromised phase between hatch (0 dph) and teeth-development (8 dph). The expression of two of the studied genes (mhc2, lysc) was temperature dependent, leading to increased mRNA levels at 22 °C. Additionally, at the lower end of the thermal spectrum (16 °C) immune competency appeared reduced, whilst close to the upper thermal limit (22 °C) larvae showed signs of thermal stress. Thus, protection against pathogens is probably impaired at temperatures close to the critical thermal maximum (CTmax), impacting survival and productivity in hatcheries and natural recruitment

    Genetic architecture of early life history traits for channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrid production

    No full text
    Hybrid catfish, the progeny of channel catfish, Ictalurus punctatus, females × blue catfish, I. furcatus, males are in high demand by the aquaculture industry due to their superiority for pond culture. Unfortunately, fry production is a limiting factor due to lack of natural hybridization between the species and the necessity to sacrifice males for artificial fertilization. In this study, we used a quantitative genetic breeding design to assess genetic, environmental, and genotype by environment interactions to detail the genetic architecture of fitness during the “critical” early life history (ELH) stages. Males and females were crossed using a full-factorial design, creating 20 unique families. Offspring from each family were split into 2 temperature-controlled environments based on conditions that mimic early (26.6 °C) and late (32.2 °C) seasonal temperatures. Embryonic survival, hatch success, larval morphology, and deformities were quantified at hatch, mid-yolk sac transition, and swim-up stages of early development. Variation in early performance traits (calculated as variance components, VC) were partitioned to maternal/paternal effects as well as parental × environmental interactions, analyzed across and within temperatures. Embryonic survival ranged from 45 to 93% by 120°-hours post-fertilization and was not impacted by temperature. Maternal effects were responsible for large amounts of variation (VC = 51%), and paternal effects also became apparent during later stages of embryonic development but in smaller quantities (VC = ~7%). Temperature significantly impacted hatch success, in which hatch decreased at 32.2 °C (from 40% to 32%). Therefore, we conclude that temperatures at the start of the spawning season yield higher hatch success. Maternal effects were highly significant (VC = 65%), and there were also significant paternal effects (VC = 12%) with wide family variation (ranging from 14 to 71%). The deformity rate increased from 3.6% at 26.6 °C to 6.0% at 32.2 °C, but variation was driven more by maternal effects rather than temperature. For morphology, fry reared at 32.2 °C had smaller body sizes at each developmental stage. Maternal variation across morphology traits ranged widely from 9 to 80% and was highest for maternal yolk. Paternal effects/interactions ranged from to 0–29%. Genetic × environmental interactions were also observed for morphology traits since values for VCs differed within each temperature. This information showed the importance of environmental effects, parentage, and their associated interactions, which by isolating indicators of male/female quality, can be used to develop parameters for broodstock selection. Results can also be applied to improve incubation conditions for hybrid catfish during the crucial ELH stages

    Physiological functions of osmolality and calcium ions on the initiation of sperm motility and swimming performance in redside dace, Clinostomus elongatus

    No full text
    Reproductive potential of fish stocks is critically dependent on sperm performance in an aquatic environment. The aim of this study is to test hypotheses, which govern the initiation of sperm motility and swimming performance, through physiological functions of osmolality and Ca2+ ion, in a threatened species of freshwater fish, the redside dace, Clinostomus elongatus. Spermatozoa motility was activated in either ionic or non-ionic media spanning a range of osmolalities. The role of Ca2+ channels on induction of spermatozoa motility and velocity was experimentally investigated by diluting sperm in media that contain various Ca2+ channel blockers. Results show that initiation of spermatozoa motility is a hypo-osmolality dependent mechanism. Inhibitors for L-type Ca2+ channels partially prohibited initiation of spermatozoa motility, while velocity was significantly reduced in both L-type and T-type Ca2+ channel blockers. Examination using W-7, an inhibitor for Ca2+-dependent calmodulin, showed significant decreases in spermatozoa motility and velocity. Involvement for Ca2+ in axonemal beating was confirmed by significant increases in velocity after adding Ca2+ into the activation media, while motility remained unchanged in Ca2+ supplemented activation media. Together, these findings suggest the involvement of Ca2+ in hypo-osmolality-dependent initiation of spermatozoa motility mediated by activation of Ca2+ binding protein in the axoneme of a freshwater fish sperm. Blocking Ca2+ exchange through L- or T-type Ca2+ channel influences flagellar beating force and leads to decrease in spermatozoa velocity. (C) 2013 Elsevier Inc. All rights reserved

    Abundance of specific mRNA transcripts impacts hatching success in European eel, Anguilla anguilla L

    No full text
    International audienceMaternal mRNA governs early embryonic development in fish and variation in abundance of maternal transcripts may contribute to variation in embryonic survival and hatch success in European eel, Anguilla anguilla. Previous studies have shown that quantities of the maternal gene products β-tubulin, insulin-like growth factor 2 (igf2), nucleoplasmin (npm2), prohibitin 2 (phb2), phosphatidylinositol glycan biosynthesis class F protein 5 (pigf5), and carnitine O-palmitoyltransferase liver isoform-like 1 (cpt1) are associated with embryonic developmental competence in other teleosts. Here, the relations between relative mRNA abundance of these genes in eggs and/or embryos and egg quality, was studied and analyzed. We compared egg quality of the two groups: i) batches with hatching and ii) batches with no hatching. Results showed no significant differences in relative mRNA abundance between the hatch and no hatching groups for any of the selected genes at 0, 2.5, and 5 HPF. However, at 30 HPF the hatch group showed significantly higher abundance of cpt1a, cpt1b, β-tubulin, phb2, and pigf5 transcripts than the no hatch group. Therefore, these results indicate that up-regulation of the transcription of these genes in European eel after the mid-blastula transition, may be needed to sustain embryonic development and hatching success

    Reproductive investment patterns, sperm characteristics, and seminal plasma physiology in alternative reproductive tactics of Chinook salmon (Oncorhynchus tshawytscha)

    No full text
    Although alternative reproductive tactics (ARTs) are common across a range of taxa, little is known about whether the different tactics have adapted to sperm competition risk. Chinook salmon, Oncorhynchus tshawytscha, have two ARTs: large males that participate in dominance-based hierarchies for access to spawning females, known as hooknoses, and small males that attempt to sneak fertilizations during spawning events from peripheral positions, known as jacks. Jacks continually face sperm competition risk because they always spawn in the presence of another male, whereas hooknoses face relatively low sperm competition risk because other males are not always present during spawning events. Based on the sneak-guard model of sperm competition this asymmetry in sperm competition risk predicts that jacks ought to invest significantly more into sperm-related traits important for sperm competition success relative to hooknoses. In the present study we report on reproductive investment patterns, sperm characteristics, and seminal plasma physiology of males that exhibit ARTs in Chinook salmon. We found that jacks invest significantly more of their somatic tissue into gonads compared with hooknoses. Sperm velocity also varied significantly between the ARTs, with jacks having significantly faster sperm than hooknoses. No significant differences in seminal plasma physiology metrics related to sperm quality were detected between the ARTs. We interpret these sperm investment patterns in light of the sneak-guard model of sperm competition that is based on differences in sperm competition risk and alternative investment possibilities among ARTs. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ,

    Ovarian fluid influences sperm performance in lake trout, Salvelinus namaycush

    No full text
    The objectives of this study were to determine whether (i) the presence and concentration of ovarian fluid (OF) affects sperm performance traits, and (ii) variation in sperm performance traits is due to male identity, female identity, and/or male x female interactions in lake trout, Salvelinus namaycush. Spermatozoa from four males were activated in river water and OF from four females at two concentrations (10 and 15%). Presence of ovarian fluid influenced sperm traits; no differences were detected between 10 and 15% OF. Sperm traits varied depending on parental identity, such that sperm of some males perform better in th

    Effects of ovarian fluid and genetic differences on sperm performance and fertilization success of alternative reproductive tactics in Chinook salmon

    No full text
    In many species, sperm velocity affects variation in the outcome of male competitive fertilization success. In fishes, ovarian fluid (OF) released with the eggs can increase male sperm velocity and potentially facilitate cryptic female choice for males of specific phenotypes and/or genotypes. Therefore, to investigate the effect of OF on fertilization success, we measured sperm velocity and conducted in vitro competitive fertilizations with paired Chinook salmon (Oncorhynchus tshawytscha) males representing two alternative reproductive tactics, jacks (small sneaker males) and hooknoses (large guarding males), in the presence of river water alone and OF mixed with river water. To determine the effect of genetic differences on fertilization success, we genotyped fish at neutral (microsatellites) and functional [major histocompatibility complex (MHC) II ß1] markers. We found that when sperm were competed in river water, jacks sired significantly more offspring than hooknoses; however, in OF, there was no difference in paternity between the tactics. Sperm velocity was significantly correlated with paternity success in river water, but not in ovarian fluid. Paternity success in OF, but not in river water alone, was correlated with genetic relatedness between male and female, where males that were less related to the female attained greater paternity. We found no relationship between MHC II ß1 divergence between mates and paternity success in water or OF. Our results indicate that OF can influence the outcome of sperm competition in Chinook salmon, where OF provides both male tactics with fertilization opportunities, which may in part explain what maintains both tactics in nature
    corecore