4,870 research outputs found
Gluon-induced W-boson pair production at the LHC
Pair production of W bosons constitutes an important background to Higgs
boson and new physics searches at the Large Hadron Collider LHC. We have
calculated the loop-induced gluon-fusion process gg -> W*W* -> leptons,
including intermediate light and heavy quarks and allowing for arbitrary
invariant masses of the W bosons. While formally of next-to-next-to-leading
order, the gg -> W*W* -> leptons process is enhanced by the large gluon flux at
the LHC and by experimental Higgs search cuts, and increases the
next-to-leading order WW background estimate for Higgs searches by about 30%.
We have extended our previous calculation to include the contribution from the
intermediate top-bottom massive quark loop and the Higgs signal process. We
provide updated results for cross sections and differential distributions and
study the interference between the different gluon scattering contributions. We
describe important analytical and numerical aspects of our calculation and
present the public GG2WW event generator.Comment: 20 pages, 4 figure
Radiation Hardness Studies in a CCD with High-Speed Column Parallel Readout
Charge Coupled Devices (CCDs) have been successfully used in several high
energy physics experiments over the past two decades. Their high spatial
resolution and thin sensitive layers make them an excellent tool for studying
short-lived particles. The Linear Collider Flavour Identification (LCFI)
collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex
detector of the International Linear Collider (ILC). The CPCCDs can be read out
many times faster than standard CCDs, significantly increasing their operating
speed. The results of detailed simulations of the charge transfer inefficiency
(CTI) of a prototype CPCCD are reported and studies of the influence of gate
voltage on the CTI described. The effects of bulk radiation damage on the CTI
of a CPCCD are studied by simulating the effects of two electron trap levels,
0.17 and 0.44 eV, at different concentrations and operating temperatures. The
dependence of the CTI on different occupancy levels (percentage of hit pixels)
and readout frequencies is also studied. The optimal operating temperature for
the CPCCD, where the effects of the charge trapping are at a minimum, is found
to be about 230 K for the range of readout speeds proposed for the ILC. The
results of the full simulation have been compared with a simple analytic model.Comment: 3 pages, 6 figures; presented at IEEE'07, ALCPG'07, ICATPP'0
Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders
We present a detailed study of the production of a high transverse-momentum
lepton pair at hadron colliders, which includes the exact O(alpha) electroweak
corrections properly matched with leading logarithmic effects due to multiple
photon emission, as required by the experiments at the Fermilab Tevatron and
the CERN LHC. Numerical results for the relevant observables of single Z-boson
production at hadron colliders are presented. The impact of the radiative
corrections is discussed in detail. The presence in the proton of a photon
density is considered and the effects of the photon-induced partonic
subprocesses are analyzed. The calculation has been implemented in the new
version of the event generator HORACE, which is available for precision
simulations of the neutral and charged current Drell-Yan processes.Comment: October 2007, 22p
HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results
In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology.
In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given
Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion
The potential for the discovery of a Standard Model Higgs boson in the mass
range m_H < 2 m_Z in the vector boson fusion mode has been studied for the
ATLAS experiment at the LHC. The characteristic signatures of additional jets
in the forward regions of the detector and of low jet activity in the central
region allow for an efficient background rejection. Analyses for the H -> WW
and H -> tau tau decay modes have been performed using a realistic simulation
of the expected detector performance. The results obtained demonstrate the
large discovery potential in the H -> WW decay channel and the sensitivity to
Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil
A double-sided silicon micro-strip super-module for the ATLAS inner detector upgrade in the high-luminosity LHC
The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail
Measurement of the production of charged pions by protons on a tantalum target
A measurement of the double-differential cross-section for the production of
charged pions in proton--tantalum collisions emitted at large angles from the
incoming beam direction is presented. The data were taken in 2002 with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target
with a thickness of 5% of a nuclear interaction length. The angular and
momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and
0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design
of a neutrino factory. The produced particles were detected using a
small-radius cylindrical time projection chamber (TPC) placed in a solenoidal
magnet. Track recognition, momentum determination and particle identification
were all performed based on the measurements made with the TPC. An elaborate
system of detectors in the beam line ensured the identification of the incident
particles. Results are shown for the double-differential cross-sections
at four incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the
pion yields within the acceptance of typical neutrino factory designs are shown
as a function of beam momentum. The measurement of these yields within a single
experiment eliminates most systematic errors in the comparison between rates at
different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys.
J.
Confronting models on cosmic ray interactions with particle physics at LHC energies
Inelastic pp collisions are dominated by soft (low momentum transfer) physics
where perturbative QCD cannot be fully applied. A deep understanding of both
soft and semi-hard processes is crucial for predictions of minimum bias and
underlying events of the now coming on line pp Large Hadron Collider (LHC).
Moreover, the interaction of cosmic ray particles entering in the atmosphere is
extremely sensitive to these soft processes and consequently cannot be
formulated from first principles. Because of this, air shower analyses strongly
rely on hadronic interaction models, which extrapolate collider data several
orders of magnitude. A comparative study of Monte Carlo simulations of pp
collisions (at the LHC center-of-mass energy ~ 14 TeV) using the most popular
hadronic interaction models for ultrahigh energy cosmic ray (SIBYLL and QGSJET)
and for collider physics (the PYTHIA multiparton model) is presented. The most
relevant distributions are studied including those observables from diffractive
events with the aim of discriminating between the different models.Comment: 8 pages revtex, 8 figures, added reference
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
- …
