2,207 research outputs found
On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios
Recent improvements in stellar models for intermediate-mass and massive stars
are recalled, together with their expectations for the synthesis of radioactive
nuclei of lifetime Myr, in order to re-examine the origins
of now extinct radioactivities, which were alive in the solar nebula. The
Galactic inheritance broadly explains most of them, especially if -process
nuclei are produced by neutron star merging according to recent models.
Instead, Al, Ca, Cs and possibly Fe require
nucleosynthesis events close to the solar formation. We outline the persisting
difficulties to account for these nuclei by Intermediate Mass Stars (2
M/M). Models of their final stages now
predict the ubiquitous formation of a C reservoir as a neutron capture
source; hence, even in presence of Al production from Deep Mixing or Hot
Bottom Burning, the ratio Al/Pd remains incompatible with
measured data, with a large excess in Pd. This is shown for two recent
approaches to Deep Mixing. Even a late contamination by a Massive Star meets
problems. In fact, inhomogeneous addition of Supernova debris predicts
non-measured excesses on stable isotopes. Revisions invoking specific low-mass
supernovae and/or the sequential contamination of the pre-solar molecular cloud
might be affected by similar problems, although our conclusions here are
weakened by our schematic approach to the addition of SN ejecta. The limited
parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap
The Solar Photospheric Nitrogen Abundance: Determination with 3D and 1D Model Atmospheres
We present a new determination of the solar nitrogen abundance making use of
3D hydrodynamical modelling of the solar photosphere, which is more physically
motivated than traditional static 1D models. We selected suitable atomic
spectral lines, relying on equivalent width measurements already existing in
the literature. For atmospheric modelling we used the co 5 bold 3D radiation
hydrodynamics code. We investigated the influence of both deviations from local
thermodynamic equilibrium (non-LTE effects) and photospheric inhomogeneities
(granulation effects) on the resulting abundance. We also compared several
atlases of solar flux and centre-disc intensity presently available. As a
result of our analysis, the photospheric solar nitrogen abundance is A(N) =
7.86 +/- 0.12.Comment: 6 pages, 4 figure
Stress influence on high temperature oxide scale growth: modeling and investigation on a thermal barrier coating system.
International audienceIn thermal barrier coating (TBC) systems, an oxide layer develops at high temperature below the ceramic coating, leading at long term to the mechanical failure of the structure upon cooling. This study investigates a mechanism of stress-affected oxidation likely to induce the growth of a non-uniform oxide scale detrimental to the TBC lifetime. A continuum thermodynamics formulation is derived accounting for the influence of the stress and strain situation at the sharp metal/oxide phase boundary on the local oxidation kinetics. It specially includes the contributions of the large volumetric strain and the mass consumption associated with metal oxidation. A continuum mechanics/mass diffusion framework is used along with the developed formulation for the interface evolution to study the growth of an oxide layer coupled with local stress development. The implementation of the model has required the development of a specific simulation tool, based on a finite element method completed with an external routine for the phase boundary propagation. Results on an electron-beam physical vapor deposited (EB-PVD) TBC case are presented. The processes resulting in a non-uniform oxide scale growth are analyzed and the main influences are discussed
The early evolution of Globular Clusters: the case of NGC 2808
Enhancement and spread of helium among globular cluster stars have been
recently suggested as a way to explain the horizontal branch blue tails, in
those clusters which show a primordial spread in the abundances of CNO and
other elements involved in advanced CNO burning (D'Antona et al. 2002). In this
paper we examine the implications of the hypothesis that, in many globular
clusters, stars were born in two separate events: an initial burst (first
generation), which gives origin to probably all high and intermediate mass
stars and to a fraction of the cluster stars observed today, and a second,
prolonged star formation phase (second generation) in which stars form directly
from the ejecta of the intermediate mass stars of the first generation. In
particular, we consider in detail the morphology of the horizontal branch in
NGC 2808 and argue that it unveils the early cluster evolution, from the birth
of the first star generation to the end of the second phase of star formation.
This framework provides a feasible interpretation for the still unexplained
dichotomy of NGC 2808 horizontal branch, attributing the lack of stars in the
RR Lyr region to the gap in the helium content between the red clump, whose
stars are considered to belong to the first stellar generation and have
primordial helium, and the blue side of the horizontal branch, whose minimum
helium content reflects the helium abundance in the smallest mass
(~4Msun)contributing to the second stellar generation. This scenario provides
constraints on the required Initial Mass Function, in a way that a great deal
of remnant neutron stars and stellar mass black holes might have been produced.Comment: 23 pages, 7 figures, in press on The Astrophysical Journa
Abundance gradients in the Milky Way for alpha elements, Iron peak elements, Barium, Lanthanum and Europium
We model the abundance gradients in the disk of the Milky Way for several
chemical elements (O, Mg, Si, S, Ca, Sc, Ti, Co, V, Fe, Ni, Zn, Cu, Mn, Cr, Ba,
La and Eu), and compare our results with the most recent and homogeneous
observational data. We adopt a chemical evolution model able to well reproduce
the main properties of the solar vicinity. We compute, for the first time, the
abundance gradients for all the above mentioned elements in the galactocentric
distance range 4 - 22 kpc. The comparison with the observed data on Cepheids in
the galactocentric distance range 5-17 kpc gives a very good agreement for many
of the studied elements. In addition, we fit very well the data for the
evolution of Lanthanum in the solar vicinity for which we present results here
for the first time. We explore, also for the first time, the behaviour of the
abundance gradients at large galactocentric distances by comparing our results
with data relative to distant open clusters and red giants and select the best
chemical evolution model model on the basis of that. We find a very good fit to
the observed abundance gradients, as traced by Cepheids, for most of the
elements, thus confirming the validity of the inside-out scenario for the
formation of the Milky Way disk as well as the adopted nucleosynthesis
prescriptions.Comment: 11 pages, 9 figures, accepted for publication in A&
Mid Infrared Photometry of Mass-Losing AGB Stars
We present ground-based mid-infrared imaging for 27 M-, S- and C-type
Asymptotic Giant Branch (AGB) stars. The data are compared with those of the
database available thanks to the IRAS, ISO, MSX and 2MASS catalogues. Our goal
is to establish relations between the IR colors, the effective temperature
, the luminosity and the mass loss rate , for improving
the effectiveness of AGB modelling. Bolometric (absolute) magnitudes are
obtained through distance compilations, and by applying previously-derived
bolometric corrections; the variability is also studied, using data accumulated
since the IRAS epoch. The main results are: i) Values of and for C
stars fit relations previously established by us, with Miras being on average
more evolved and mass losing than Semiregulars. ii) Moderate IR excesses (as
compared to evolutionary tracks) are found for S and M stars in our sample:
they are confirmed to originate from the dusty circumstellar environment. iii)
A larger reddening characterizes C-rich Miras and post-AGBs. In this case, part
of the excess is due to AGB models overestimating for C-stars, as a
consequence of the lack of suitable molecular opacities. This has a large
effect on the colors of C-rich sources and sometimes disentangling the
photospheric and circumstellar contributions is difficult; better model
atmospheres should be used in stellar evolutionary codes for C stars. iv) The
presence of a long-term variability at mid-IR wavelengths seems to be limited
to sources with maximum emission in the 8 -- 20 m region, usually Mira
variables (1/3 of our sample). Most Semiregular and post-AGB stars studied here
remained remarkably constant in mid-IR over the last twenty years.Comment: Accepted for publication in the Astronomical Journal - 35 pages (in
preprint), 9 figures, 5 table
Alpha Element Abundances in a Large Sample of Galactic Planetary Nebulae
We present emission line strengths, abundances, and element ratios (X/O for
Ne, S, Cl, and Ar) for a sample of 38 Galactic disk planetary nebulae (PNe)
consisting primarily of Peimbert classification Type I. Spectrophotometry for
these PNe incorporates an extended optical/near-IR range of 3600-9600 angstroms
including the [S III] lines at 9069 and 9532. We have utilized Emission Line
Spectrum Analyzer, a five-level atom abundance routine, to determine T_e, N_e,
ionization correction factors, and total element abundances. With a compilation
of data from >120 Milky Way PNe, we present results from our most recent
analysis of abundance patterns in Galactic disk PNe. We have examined the alpha
elements against H II regions and blue compact galaxies (H2BCG) to discern
signatures of depletion or enhancement in PNe progenitor stars, particularly
the destruction or production of O and Ne. We present evidence that many PNe
have higher Ne/O and lower Ar/Ne ratios compared to H2BCGs within the range of
8.5-9.0 for 12 + log(O/H). This suggests that Ne is being synthesized in the
low- and intermediate-mass progenitors. Sulfur abundances in PNe continue to
show great scatter and are systematically lower than those found in H2BCG at a
given metallicity. Although we find that PNe do show some distinction in alpha
elements when compared to H2BCG, within the Peimbert classification types
studied, PNe do not show significant differences in alpha elements amongst
themselves, at least to an extent that would distinguish in situ
nucleosynthesis from the observed dispersion in abundance ratios.Comment: 12 pages, 18 figures, 7 tables (note: tables 2-5 are available online
only in machine-readable form
The Gattini cameras for optical sky brightness measurements at Dome C, Antarctica
The Gattini cameras are two site testing instruments for
the measurement of optical sky brightness, large area cloud cover and auroral detection of the night sky above the high altitude Dome C site in Antarctica. The cameras have been operating since installation in January 2006 and are currently at the end of the first Antarctic winter season. The cameras are transit in nature and are virtually identical both adopting Apogee Alta CCD detectors. By taking frequent images of the night sky we obtain long term cloud cover statistics, measure the sky background intensity as a function of solar and lunar altitude and
phase and directly measure the spatial extent of bright aurora if present and when they occur. The full data set will return in December 2006 however a limited amount of data has been transferred via the Iridium network enabling preliminary data reduction and system evaluation.
An update of the project is presented together with preliminary results from data taken since commencement of the winter season
- …
