Enhancement and spread of helium among globular cluster stars have been
recently suggested as a way to explain the horizontal branch blue tails, in
those clusters which show a primordial spread in the abundances of CNO and
other elements involved in advanced CNO burning (D'Antona et al. 2002). In this
paper we examine the implications of the hypothesis that, in many globular
clusters, stars were born in two separate events: an initial burst (first
generation), which gives origin to probably all high and intermediate mass
stars and to a fraction of the cluster stars observed today, and a second,
prolonged star formation phase (second generation) in which stars form directly
from the ejecta of the intermediate mass stars of the first generation. In
particular, we consider in detail the morphology of the horizontal branch in
NGC 2808 and argue that it unveils the early cluster evolution, from the birth
of the first star generation to the end of the second phase of star formation.
This framework provides a feasible interpretation for the still unexplained
dichotomy of NGC 2808 horizontal branch, attributing the lack of stars in the
RR Lyr region to the gap in the helium content between the red clump, whose
stars are considered to belong to the first stellar generation and have
primordial helium, and the blue side of the horizontal branch, whose minimum
helium content reflects the helium abundance in the smallest mass
(~4Msun)contributing to the second stellar generation. This scenario provides
constraints on the required Initial Mass Function, in a way that a great deal
of remnant neutron stars and stellar mass black holes might have been produced.Comment: 23 pages, 7 figures, in press on The Astrophysical Journa