8 research outputs found

    Comparing Transmission- and Epi-BCARS: A Transnational Round Robin on Solid State Materials

    Full text link
    Broadband coherent anti-Stokes Raman scattering (BCARS) is an advanced Raman spectroscopy method that combines the spectral sensitivity of spontaneous Raman scattering (SR) with the increased signal intensity of single-frequency coherent Raman techniques. These two features make BCARS particularly suitable for ultra-fast imaging of heterogeneous samples, as already shown in biomedicine. Recent studies demonstrated that BCARS also shows exceptional spectroscopic capabilities when inspecting crystalline materials like lithium niobate and lithium tantalate, and can be used for fast imaging of ferroelectric domain walls. These results strongly suggest the extension of BCARS towards new imaging applications like mapping defects, strain, or dopant levels, similar to standard SR imaging. Despite these advantages, BCARS suffers from a spurious and chemically unspecific non-resonant background (NRB) that distorts and shifts the Raman peaks. Post-processing numerical algorithms are then used to remove the NRB and to obtain spectra comparable to SR results. Here, we show the reproducibility of BCARS by conducting an internal Round Robin with two different BCARS experimental setups, comparing the results on different crystalline materials of increasing structural complexity: diamond, 6H-SiC, KDP, and KTP. First, we compare the detected and phase-retrieved signals, the setup-specific NRB-removal steps, and the mode assignment. Subsequently, we demonstrate the versatility of BCARS by showcasing how the selection of pump wavelength, pulse width, and detection geometry can be tailored to suit the specific objectives of the experiment. Finally, we compare and optimize measurement parameters for the high-speed, hyperspectral imaging of ferroelectric domain walls in lithium niobate.Comment: 12 pages, 8 figure

    The closer object? An information-based dissociation between vision for perception and vision for movement in early infancy.

    No full text
    In human adults two functionally and neuro-anatomically separate systems exist for the use of visual information in perception and the use of visual information to control movements (Milner & Goodale 1995, 2008). We investigated whether this separation is already functioning in the early stages of the development of reaching. To this end, 6- and 7-month-old infants were presented with two identical objects at identical distances in front of an illusory Ponzo-like background that made them appear to be located at different distances. In two further conditions without the illusory background, the two objects were presented at physically different distances. Preferential reaching outcomes indicated that the allocentric distance information contained in the illusory background affected the perception of object distance. Yet, infants' reaching kinematics were only affected by the objects' physical distance and not by the perceptual distance manipulation. These findings were taken as evidence for the two-visual systems, as proposed by Milner and Goodale (2008), being functional in early infancy. We discuss the wider implications of this early dissociation. © 2012 Blackwell Publishing Ltd
    corecore