1,043 research outputs found

    Tests of the Rockwell Si:As Back-Illuminated Blocked-Impurity Band (BIBIB) detectors

    Get PDF
    Two arrays of Rockwell's Si:As back-illuminated blocked-impurity-band detectors were tested at the Max-Planck-Institute for Astronomy (MPIA) at low background and low temperature for possible use in the astronomical space experiment ISOPHOT. For these measurements special test equipment was put together. A cryostat was mechanically modified to accommodate the arrays and special peripheral electronics was added to a microprocessor system to drive the cold multiplexer and to acquire the output data. The first device, a 16x50 element array on a fan-out board was used to test individual pixels with a trans-impedance-amplifier at a photon background of 10(exp 8) Ph s(-1)cm(-2) and at temperatures of 2.7 to 4.4 K. The noise-equivalent-power NEP is in the range 5 - 7 x 10(exp -18) WHz(exp -1/2), the responsivity is less than or equal to 100 AW(exp -1)(f = 10 Hz). The second device was a 10x50 array including a cold readout electronics of switched FETs (SWIFET). Measurements of this array were done in a background range of 5 x 10(exp 5) to 5 x 10(exp 11) Ph s(exp-1)cm(exp-2) and at operating temperatures between 3.0 and 4.8 K. The NEP ranges from less than 10(exp -18) at the lowest background to 2 x 10(exp -16) WHz(exp -1/2) at the highest flux

    Identification of human papillomavirus DNA in cutaneous lesions of Cowden syndrome

    Get PDF
    Background: Cowden syndrome (CS) or multiple hamartoma syndrome is a cancer-associated genodermatosis inherited in an autosomal dominant pattern. One of the diagnostic criteria is facial papules which are felt to be trichilemmomas, benign hair follicle tumors, which some consider to be induced by human papillomavirus (HPV). Objective: To search for HPV in skin tumors, especially trichilemmomas, from patients with CS. Methods: Skin lesions from patients with CS were classified histologically. Each tumor was then analyzed for HPV DNA by polymerase chain reaction with different primer sets; positive amplicons were typed by direct sequencing. Results: Twenty-nine biopsies from 7 patients with CS were investigated. Only 2 of 29 tumors clinically suspected of being trichilemmomas were confirmed histologically. In addition, 3 sclerotic fibromas, also typical of CS, were found, as well as 1 sebaceous hyperplasia. The other 23 lesions showed histological features of HPV-induced tumors in various stages of development. HPV DNA was found in 19 of 29 cutaneous lesions. Tumors without any histological signs of HPV induction were negative for HPV DNA. Two tumors which were histologically classified as common warts contained HPV types 27 and 28. All the 17 other HPV types belong to the group of epidermodysplasia-verruciformis-associated types. Conclusions: The majority of cutaneous lesions in CS contain HPV DNA. They may have a variety of histological patterns. Trichilemmomas are not clinically distinctive and can be difficult to identify in CS patients. Copyright (C) 2003 S. Karger AG, Basel

    Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity.

    Get PDF
    The recruitment kinetics of double-strand break (DSB) signaling and repair proteins Mdc1, 53BP1 and Rad52 into radiation-induced foci was studied by live-cell fluorescence microscopy after ion microirradiation. To investigate the influence of damage density and complexity on recruitment kinetics, which cannot be done by UV laser irradiation used in former studies, we utilized 43 MeV carbon ions with high linear energy transfer per ion (LET = 370 keV/”m) to create a large fraction of clustered DSBs, thus forming complex DNA damage, and 20 MeV protons with low LET (LET = 2.6 keV/”m) to create mainly isolated DSBs. Kinetics for all three proteins was characterized by a time lag period T(0) after irradiation, during which no foci are formed. Subsequently, the proteins accumulate into foci with characteristic mean recruitment times τ(1). Mdc1 accumulates faster (T(0) = 17 ± 2 s, τ(1) = 98 ± 11 s) than 53BP1 (T(0) = 77 ± 7 s, τ(1) = 310 ± 60 s) after high LET irradiation. However, recruitment of Mdc1 slows down (T(0) = 73 ± 16 s, τ(1) = 1050 ± 270 s) after low LET irradiation. The recruitment kinetics of Rad52 is slower than that of Mdc1, but exhibits the same dependence on LET. In contrast, the mean recruitment time τ(1) of 53BP1 remains almost constant when varying LET. Comparison to literature data on Mdc1 recruitment after UV laser irradiation shows that this rather resembles recruitment after high than low LET ionizing radiation. So this work shows that damage quality has a large influence on repair processes and has to be considered when comparing different studies

    The Automatic Real-Time GRB Pipeline of the 2-m Liverpool Telescope

    Get PDF
    The 2-m Liverpool Telescope (LT), owned by Liverpool John Moores University, is located in La Palma (Canary Islands) and operates in fully robotic mode. In 2005, the LT began conducting an automatic GRB follow-up program. On receiving an automatic GRB alert from a Gamma-Ray Observatory (Swift, INTEGRAL, HETE-II, IPN) the LT initiates a special override mode that conducts follow-up observations within 2-3 min of the GRB onset. This follow-up procedure begins with an initial sequence of short (10-s) exposures acquired through an r' band filter. These images are reduced, analyzed and interpreted automatically using pipeline software developed by our team called "LT-TRAP" (Liverpool Telescope Transient Rapid Analysis Pipeline); the automatic detection and successful identification of an unknown and potentially fading optical transient triggers a subsequent multi-color imaging sequence. In the case of a candidate brighter than r'=15, either a polarimetric (from 2006) or a spectroscopic observation (from 2007) will be triggered on the LT. If no candidate is identified, the telescope continues to obtain z', r' and i' band imaging with increasingly longer exposure times. Here we present a detailed description of the LT-TRAP and briefly discuss the illustrative case of the afterglow of GRB 050502a, whose automatic identification by the LT just 3 min after the GRB, led to the acquisition of the first early-time (< 1 hr) multi-color light curve of a GRB afterglow.Comment: PASP, accepted (8 pages, 3 figures

    The Moon at thermal infrared wavelengths: A benchmark for asteroid thermal models

    Get PDF
    Thermal-infrared measurements of asteroids are crucial for deriving the objects' sizes, albedos, and also the thermophysical properties of the surface material. Depending on the available data, a range of simple to complex thermal models are applied to achieve specific science goals. However, testing these models is often a difficult process and the uncertainties of the derived parameters are not easy to estimate. Here, we make an attempt to verify a widely accepted thermophysical model (TPM) against unique thermal infrared (IR), full-disk, and well-calibrated measurements of the Moon. The data were obtained by the High-resolution InfraRed Sounder (HIRS) instruments on board a fleet of Earth weather satellites that serendipitously scan over the Moon. We found 22 Moon intrusions, taken in 19 channels between 3.75 micron and 15.0 micron, and over a wide phase angle range from -73.1 deg to +73.8 deg. The similarity between these Moon data and typical asteroid spectral-IR energy distributions allows us to benchmark the TPM concepts and to point out problematic aspects. The TPM predictions match the HIRS measurements within 5% (10% at the shortest wavelengths below 5 micron when using the Moon's known properties (size, shape, spin, albedo, thermal inertia, roughness) in combination with a newly established wavelength-dependent hemispherical emissivity. In the 5-7.5 micron and in the 9.5 to 11 micron ranges, the global emissivity model deviates considerably from the known lunar sample spectra. Our findings will influence radiometric studies of near-Earth and main-belt asteroids in cases where only short-wavelength data (from e.g., NEOWISE, the warm Spitzer mission, or ground-based M-band measurements) are available. The new, full-disk IR Moon model will also be used for the calibration of IR instrumentation on interplanetary missions (e.g., for Hayabusa-2) and weather satellites.Comment: 21 pages, 9 figures, 7 tables, accepted for publication in Astronomy & Astrophysics in March 202

    ISOCAM observations of the L1551 star formation region

    Get PDF
    The results of a deep mid-IR ISOCAM survey of the L1551 dark molecular cloud are presented. The aim of this survey is a search for new YSO (Young Stellar Object) candidates, using two broad-band filters centred at 6.7 and 14.3 micron. Although two regions close to the centre of L1551 had to be avoided due to saturation problems, 96 sources were detected in total (76 sources at 6.7 micron and 44 sources at 14.3 micron). Using the 24 sources detected in both filters, 14 were found to have intrinsic mid-IR excess at 14.3 micron and were therefore classified as YSO candidates. Using additional observations in B, V, I, J, H and K obtained from the ground, most candidates detected at these wavelengths were confirmed to have mid-IR excess at 6.7 micron as well, and three additional YSO candidates were found. Prior to this survey only three YSOs were known in the observed region (avoiding L1551 IRS5/NE and HL/XZ Tau). This survey reveals 15 new YSO candidates, although several of these are uncertain due to their extended nature either in the mid-IR or in the optical/near-IR observations. Two of the sources with mid-IR excess are previously known YSOs, one is a brown dwarf MHO 5 and the other is the well known T Tauri star HH30, consisting of an outflow and an optically thick disk seen edge on.Comment: 14 Pages, 8 Figure

    ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster

    Get PDF
    We present the results of the first extensive mid-infrared (IR) imaging survey of the rho Ophiuchi embedded cluster, performed with the ISOCAM camera on board the ISO satellite. The main molecular cloud L1688, as well as L1689N and L1689S, have been completely surveyed for point sources at 6.7 and 14.3 micron. A total of 425 sources are detected including 16 Class I, 123 Class II, and 77 Class III young stellar objects (YSOs). Essentially all of the mid-IR sources coincide with near-IR sources, but a large proportion of them are recognized for the first time as YSOs. Our dual-wavelength survey allows us to identify essentially all the YSOs with IR excess in the embedded cluster down to Fnu ~ 10 - 15 mJy. It more than doubles the known population of Class II YSOs and represents the most complete census to date of newly formed stars in the rho Ophiuchi central region. The stellar luminosity function of the complete sample of Class II YSOs is derived with a good accuracy down to L= 0.03 Lsun. A modeling of this lumino- sity function, using available pre-main sequence tracks and plausible star for- mation histories, allows us to derive the mass distribution of the Class II YSOs which arguably reflects the IMF of the embedded cluster. We estimate that the IMF in rho Ophiuchi is well described by a two-component power law with a low- mass index of -0.35+/-0.25, a high-mass index of -1.7 (to be compared with the Salpeter value of -1.35), and a break occurring at M = 0.55+/-0.25 Msun. This IMF is flat with no evidence for a low-mass cutoff down to at least 0.06 Msun.Comment: A&A Document Class -- version 5.01, 27 pages, 10 figures v2: typos added including few changes in source numberin

    An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing

    Full text link
    (abridged) The discovery of OGLE 2005-BLG-390Lb, the first cool rocky/icy exoplanet, impressively demonstrated the sensitivity of the microlensing technique to extra-solar planets below 10 M_earth. A planet of 1 M_earth in the same spot would have provided a detectable deviation with an amplitude of ~ 3 % and a duration of ~ 12 h. An early detection of a deviation could trigger higher-cadence sampling which would have allowed the discovery of an Earth-mass planet in this case. Here, we describe the implementation of an automated anomaly detector, embedded into the eSTAR system, that profits from immediate feedback provided by the robotic telescopes that form the RoboNet-1.0 network. It went into operation for the 2007 microlensing observing season. As part of our discussion about an optimal strategy for planet detection, we shed some new light on whether concentrating on highly-magnified events is promising and planets in the 'resonant' angular separation equal to the angular Einstein radius are revealed most easily. Given that sub-Neptune mass planets can be considered being common around the host stars probed by microlensing (preferentially M- and K-dwarfs), the higher number of events that can be monitored with a network of 2m telescopes and the increased detection efficiency for planets below 5 M_earth arising from an optimized strategy gives a common effort of current microlensing campaigns a fair chance to detect an Earth-mass planet (from the ground) ahead of the COROT or Kepler missions. The detection limit of gravitational microlensing extends even below 0.1 M_earth, but such planets are not very likely to be detected from current campaigns. However, these will be within the reach of high-cadence monitoring with a network of wide-field telescopes or a space-based telescope.Comment: 13 pages, 4 figures and 1 table. Accepted for publication in MNRA
    • 

    corecore