446 research outputs found
The neutrino as a Majorana particle
A Majorana mass term for the neutrino would induce neutrino -
antineutrino mixing and thereby a process which violates fermion number by two
units. We study the possibility of distinguishing between a massive Majorana
and a Dirac neutrino, by measuring fermion number violating processes in
a deep inelastic scattering experiment . We show
that, if the neutrino beam is obtained from the decay of high energetic pions,
the probability of obtaining "wrong sign" leptons is suppressed by a
factor instead of the naively
expected suppression factor , where
is the neutrino energy, and are the
-neutrino and muon masses, respectively, and is the
- mixing angle. If is of the order of 10 MeV and
is of the order of (the present bounds are
() the next round of experiments may be
able to distinguish between Majorana and Dirac -neutrinos.Comment: 14 pages, 4 figures (not included), MPI-Ph/93-4
The effect of different baryons impurities
We demonstrate the different effect of different baryons impurities on the
static properties of nuclei within the framework of the relativistic mean-field
model. Systematic calculations show that and has the
same attracting role as hyperon does in lighter hypernuclei.
and hyperon has the attracting role only for the protons
distribution, and has a repulsive role for the neutrons distribution. On the
contrary, and hyperon attracts surrounding neutrons and
reveals a repulsive force to the protons. We find that the different effect of
different baryons impurities on the nuclear core is due to the different third
component of their isospin.Comment: 9 page
The pi N -> pi pi N reaction around the N(1440) energy
We study the pi N -> pi pi N reaction around the N(1440) mass-shell energy.
Considering the total cross sections and invariant mass distributions, we
discuss the role of N(1440) and its decay processes. The calculation is
performed by extending our previous approach [Phys. Rev. C 69, 025206 (2004)]
to this reaction, in which only the nucleon and Delta(1232) were considered as
intermediate baryon states. The characteristics observed in the recent data for
the pi- p -> pi0 pi0 n reaction obtained by Crystal Ball Collaboration (CBC),
can be understood as a strong interference between the two decay processes:
N(1440) -> pi Delta(1232) and N(1440) -> N(pi pi)_S. It is also found that the
scalar-isoscalar pi pi rescattering effect in the NN*(pi pi)_S vertex, which
corresponds to the propagation of sigma meson, seems to be necessary for
explain ing the several observables of the pi N -> pi pi N reaction: the large
asymmetric shape in the pi0-pi0 invariant mass distributions of the pi- p ->
pi0 pi0 n reaction and the pi+ p -> pi+ pi+ n total cross section.Comment: 28 pages, 13 figures. Version to appear in Phys. Rev.
Determination of the high-twist contribution to the structure function
We extract the high-twist contribution to the neutrino-nucleon structure
function from the analysis of the data collected by
the IHEP-JINR Neutrino Detector in the runs with the focused neutrino beams at
the IHEP 70 GeV proton synchrotron. The analysis is performed within the
infrared renormalon (IRR) model of high twists in order to extract the
normalization parameter of the model. From the NLO QCD fit to our data we
obtained the value of the IRR model normalization parameter
. We
also obtained from a similar fit to the CCFR data. The average of both results is
.Comment: preprint IHEP-01-18, 7 pages, LATEX, 1 figure (EPS
Measurement of and Structure Functions in Low Region with the IHEP-JINR Neutrino Detector
The isoscalar structure functions and are measured as functions
of averaged over all permissible for the range of 6 to 28 GeV of
incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector.
The QCD analysis of structure function provides
MeV under the assumption of QCD
validity in the region of low . The corresponding value of the strong
interaction constant agrees with the
recent result of the CCFR collaboration and with the combined LEP/SLC result.Comment: 11 pages, 1 Postscript figure, LaTeX. Talk given at the 7th
International Workshop on Deep Inelastic Scattering and QCD (DIS 99),
Zeuthen, Germany, 19-23 Apr 199
Measurement of the production of charged pions by protons on a tantalum target
A measurement of the double-differential cross-section for the production of
charged pions in proton--tantalum collisions emitted at large angles from the
incoming beam direction is presented. The data were taken in 2002 with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target
with a thickness of 5% of a nuclear interaction length. The angular and
momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and
0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design
of a neutrino factory. The produced particles were detected using a
small-radius cylindrical time projection chamber (TPC) placed in a solenoidal
magnet. Track recognition, momentum determination and particle identification
were all performed based on the measurements made with the TPC. An elaborate
system of detectors in the beam line ensured the identification of the incident
particles. Results are shown for the double-differential cross-sections
at four incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the
pion yields within the acceptance of typical neutrino factory designs are shown
as a function of beam momentum. The measurement of these yields within a single
experiment eliminates most systematic errors in the comparison between rates at
different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys.
J.
NA61/SHINE facility at the CERN SPS: beams and detector system
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose
experimental facility to study hadron production in hadron-proton,
hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton
Synchrotron. It recorded the first physics data with hadron beams in 2009 and
with ion beams (secondary 7Be beams) in 2011.
NA61/SHINE has greatly profited from the long development of the CERN proton
and ion sources and the accelerator chain as well as the H2 beamline of the
CERN North Area. The latter has recently been modified to also serve as a
fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous
components of the NA61/SHINE set-up were inherited from its predecessors, in
particular, the last one, the NA49 experiment. Important new detectors and
upgrades of the legacy equipment were introduced by the NA61/SHINE
Collaboration.
This paper describes the state of the NA61/SHINE facility - the beams and the
detector system - before the CERN Long Shutdown I, which started in March 2013
Measurements of , , , and proton production in proton-carbon interactions at 31 GeV/ with the NA61/SHINE spectrometer at the CERN SPS
Measurements of hadron production in p+C interactions at 31 GeV/c are
performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2009 using a graphite target with a
thickness of 4% of a nuclear interaction length. Inelastic and production cross
sections as well as spectra of , , p, and are
measured with high precision. These measurements are essential for improved
calculations of the initial neutrino fluxes in the T2K long-baseline neutrino
oscillation experiment in Japan. A comparison of the NA61/SHINE measurements
with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the
final published versio
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Pion emission from the T2K replica target: method, results and application
The T2K long-baseline neutrino oscillation experiment in Japan needs precise
predictions of the initial neutrino flux. The highest precision can be reached
based on detailed measurements of hadron emission from the same target as used
by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The
corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at
the CERN SPS using a replica of the T2K graphite target. In this paper details
of the experiment, data taking, data analysis method and results from the 2007
pilot run are presented. Furthermore, the application of the NA61/SHINE
measurements to the predictions of the T2K initial neutrino flux is described
and discussed.Comment: updated version as published by NIM
- …
