14 research outputs found

    Prospective randomized controlled trial of the closure of gastrojejunal anastomosis in RYGB with absorbable and inabsorbable thread

    Get PDF
    Introduction: The Roux-en-Y gastric bypass (RYGB) is, currently, the most performed technique in Brazil. Suture threads are classified according to their degradation properties. Objective: To analyze the influence on the size of the gastrojejunal anastomosis performed in Roux-en-Y gastric bypass surgery, as well as the main complications with the use of absorbable or inabsorbable thread. Methods: This study followed a prospective and randomized clinical trial, initially with 40 participants, with only 37 participants being duly selected, 19 of whom underwent gastrojejunostomy closure with an absorbable (Abs) polydioxanone suture (PDS II®) and 18 with the inabsorbable (Inb) ETHIBOND®. Statistical analysis was performed using the ANOVA and logistic regression tools (p<0.05 significant). Results: General complications and Upper Digestive Endoscopy (UDE) were less frequent at the end of 12 months in both groups. At the end of twelve months, the number of complications of the Inb thread decreased considerably, while the number of complications of the Abs thread showed an increase in other complications, including marginal ulcer and intrusive thread. Despite this, there was no significant difference between groups in terms of total weight loss. There was no statistically significant difference between the final values of the anastomotic diameter. The percentage of weight loss over the 12 months was 33.77 ± 6.97% for the Inb group and 36.10 ± 4.89% for the Abs group (p<0.05). Conclusion: Both suture threads (Inb and Abs) presented similar complications and did not present significant differences between the values of weight, gastrojejunal anastomosis, and pouch

    Linear epitopes of Paracoccidioides brasiliensis and Other Fungal Agents of Human Systemic Mycoses As vaccine Candidates

    Get PDF
    Dimorphic fungi are agents of systemic mycoses associated with significant morbidity and frequent lethality in the Americas. Among the pathogenic species are Paracoccidioides brasiliensis and Paracoccidioides lutzii, which predominate in South AmericaHistoplasma capsulatum, Coccidioides posadasii, and Coccidioides immitis, and the Sporothrix spp. complex are other important pathogens. Associated with dimorphic fungi other important infections are caused by yeast such as Candida spp. and Cryptococcus spp. or mold such as Aspergillus spp., which are also fungal agents of deadly infections. Nowadays, the actual tendency of therapy is the development of a pan-fungal vaccine. This is, however, not easy because of the complexity of eukaryotic cells and the particularities of different species and isolates. Albeit there are several experimental vaccines being studied, we will focus mainly on peptide vaccines or epitopes of T-cell receptors inducing protective fungal responses. These peptides can be carried by antibody inducing beta-( 1,3)-glucan oligo or polysaccharides, or be mixed with them for administration. The present review discusses the efficacy of linear peptide epitopes in the context of antifungal immunization and vaccine proposition.FAPESPCAPESUniv Fed Sao Paulo, Dept Microbiol Immunol & Parasitol, Sao Paulo, BrazilUniv Fed Sao Paulo, Inst Biomed Sci, Dept Microbiol, Sao Paulo, BrazilUniv Fed Sao Paulo, Lab Med Mycol IMTSP HCFMUSP LIM53, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Microbiol Immunol & Parasitol, Sao Paulo, BrazilUniv Fed Sao Paulo, Inst Biomed Sci, Dept Microbiol, Sao Paulo, BrazilUniv Fed Sao Paulo, Lab Med Mycol IMTSP HCFMUSP LIM53, Sao Paulo, BrazilFAPESP: 2016/08730-6FAPESP: 2010/51423-0Web of Scienc

    Inhibition of PbGP43 expression may suggest that gp43 is a virulence factor in Paracoccidioides brasiliensis

    Get PDF
    ABSTARCT: Glycoprotein gp43 is an immunodominant diagnostic antigen for paracoccidioidomycosis caused by Paracoccidioides brasiliensis. It is abundantly secreted in isolates such as Pb339. It is structurally related to beta-1,3-exoglucanases, however inactive. Its function in fungal biology is unknown, but it elicits humoral, innate and protective cellular immune responses; it binds to extracellular matrix-associated proteins. In this study we applied an antisense RNA (aRNA) technology and Agrobacterium tumefaciens-mediated transformation to generate mitotically stable PbGP43 mutants (PbGP43 aRNA) derived from wild type Pb339 to study its role in P. brasiliensis biology and during infection. Control PbEV was transformed with empty vector. Growth curve, cell vitality and morphology of PbGP43 aRNA mutants were indistinguishable from those of controls. PbGP43 expression was reduced 80-85% in mutants 1 and 2, as determined by real time PCR, correlating with a massive decrease in gp43 expression. This was shown by immunoblotting of culture supernatants revealed with anti-gp43 mouse monoclonal and rabbit polyclonal antibodies, and also by affinity-ligand assays of extracellular molecules with laminin and fibronectin. In vitro, there was significantly increased TNF-α production and reduced yeast recovery when PbGP43 aRNA1 was exposed to IFN-γ-stimulated macrophages, suggesting reduced binding/uptake and/or increased killing. In vivo, fungal burden in lungs of BALB/c mice infected with silenced mutant was negligible and associated with decreased lung ΙΛ-10 and IL-6. Therefore, our results correlated low gp43 expression with lower pathogenicity in mice, but that will be definitely proven when PbGP43 knockouts become available.

    The Monoclonal Antibody against the Major Diagnostic Antigen of Paracoccidioides brasiliensis Mediates Immune Protection in Infected BALB/c Mice Challenged Intratracheally with the Fungusâ–¿

    Get PDF
    The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development

    The Pathogenic Fungus Paracoccidioides brasiliensis Exports Extracellular Vesicles Containing Highly Immunogenic α-Galactosyl Epitopes▿

    Get PDF
    Exosome-like vesicles containing virulence factors, enzymes, and antigens have recently been characterized in fungal pathogens, such as Cryptococcus neoformans and Histoplasma capsulatum. Here, we describe extracellular vesicles carrying highly immunogenic α-linked galactopyranosyl (α-Gal) epitopes in Paracoccidioides brasiliensis. P. brasiliensis is a dimorphic fungus that causes human paracoccidioidomycosis (PCM). For vesicle preparations, cell-free supernatant fluids from yeast cells cultivated in Ham's defined medium-glucose were concentrated in an Amicon ultrafiltration system and ultracentrifuged at 100,000 × g. P. brasiliensis antigens were present in preparations from phylogenetically distinct isolates Pb18 and Pb3, as observed in immunoblots revealed with sera from PCM patients. In an enzyme-linked immunosorbent assay (ELISA), vesicle components containing α-Gal epitopes reacted strongly with anti-α-Gal antibodies isolated from both Chagas' disease and PCM patients, with Marasmius oreades agglutinin (MOA) (a lectin that recognizes terminal α-Gal), but only faintly with natural anti-α-Gal. Reactivity was inhibited after treatment with α-galactosidase. Vesicle preparations analyzed by electron microscopy showed vesicular structures of 20 to 200 nm that were labeled both on the surface and in the lumen with MOA. In P. brasiliensis cells, components carrying α-Gal epitopes were found distributed on the cell wall, following a punctuated confocal pattern, and inside large intracellular vacuoles. Lipid-free vesicle fractions reacted with anti-α-Gal in ELISA only when not digested with α-galactosidase, while reactivity with glycoproteins was reduced after β-elimination, which is indicative of partial O-linked chain localization. Our findings open new areas to explore in terms of host-parasite relationships in PCM and the role played in vivo by vesicle components and α-galactosyl epitopes

    The protective role of immunoglobulins in fungal infections and inflammation

    Get PDF
    International audienceIncreased incidence of fungal infections in the immunocompromised individuals and fungi-mediated allergy and inflammatory conditions in immunocompetent individuals is a cause of concern. Consequently, there is a need for efficient therapeutic alternatives to treat fungal infections and inflammation. Several studies have demonstrated that antibodies or immunoglobulins have a role in restricting the fungal burden and their clearance. However, based on the data from monoclonal antibodies, it is now evident that the efficacy of antibodies in fungal infections is dependent on epitope specificity, abundance of protective antibodies, and their isotype. Antibodies confer protection against fungal infections by multiple mechanisms that include direct neutralization of fungi and their antigens, inhibition of growth of fungi, modification of gene expression, signaling and lipid metabolism, causing iron starvation, inhibition of polysaccharide release, and biofilm formation. Antibodies promote opsonization of fungi and their phagocytosis, complement activation, and antibody-dependent cell toxicity. Passive administration of specific protective monoclonal antibodies could also prove to be beneficial in drug resistance cases, to reduce the dosage and associated toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and flexibilities to modify their structure/forms are additional advantages. The clinical data obtained with two monoclonal antibodies should incite interests in translating pre-clinical success into the clinics. The anti-inflammatory and immunoregulatory role of antibodies in fungal inflammation could be exploited by intravenous immunoglobulin or IVIg
    corecore