157 research outputs found

    Bear Stearns Memo from Tom Marano, Paul Friedman and, Wayne Buchman to Executive Committee Re Thornburg Mortgage Forebearance

    Get PDF

    Stem Cell Therapy Remediates Reconstruction of the Craniofacial Skeleton After Radiation Therapy

    Full text link
    This study utilized transplanted bone marrow stromal cells (BMSCs) as a cellular replacement therapy to remedy radiation-induced injury and restore impaired new bone formation during distraction osteogenesis (DO). BMSC therapy brought about the successful generation of new bone and significantly improved both the rate and quality of a bony union of irradiated, distracted [X-ray radiation therapy (XRT)/DO] murine mandibles to the level of nonirradiated DO animals. The bone mineral density and bone volume fraction were also significantly improved by the BMSC replacement therapy showing no difference when compared to nonirradiated animals. Finally, a biomechanical analysis examining the yield, failure load, and ultimate load also demonstrated a significantly improved structural integrity in BMSC-treated XRT/DO mandibles over XRT/DO alone. These results indicate that administration of BMSCs intraoperatively to a radiated distraction gap can function as an adequate stimulant to rescue the ability for irradiated bone to undergo DO and produce a healed regenerate of a vastly superior quality and strength. We believe that the fundamental information on the optimization of bone regeneration in the irradiated mandible provided by this work has immense potential to be translated from the bench to the bedside to lead to improved therapeutic options for patients suffering from the disastrous sequelae of radiation therapy.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140201/1/scd.2012.0472.pd

    Motoric Cognitive Risk Syndrome: Multicountry Prevalence and Dementia Risk

    Get PDF
    OBJECTIVES: Our objective is to report prevalence of motoric cognitive risk syndrome (MCR), a newly described predementia syndrome characterized by slow gait and cognitive complaints, in multiple countries, and its association with dementia risk. METHODS: Pooled MCR prevalence analysis of individual data from 26,802 adults without dementia and disability aged 60 years and older from 22 cohorts from 17 countries. We also examined risk of incident cognitive impairment (Mini-Mental State Examination decline ≥4 points) and dementia associated with MCR in 4,812 individuals without dementia with baseline Mini-Mental State Examination scores ≥25 from 4 prospective cohort studies using Cox models adjusted for potential confounders. RESULTS: At baseline, 2,808 of the 26,802 participants met MCR criteria. Pooled MCR prevalence was 9.7% (95% confidence interval [CI] 8.2%-11.2%). MCR prevalence was higher with older age but there were no sex differences. MCR predicted risk of developing incident cognitive impairment in the pooled sample (adjusted hazard ratio [aHR] 2.0, 95% CI 1.7-2.4); aHRs were 1.5 to 2.7 in the individual cohorts. MCR also predicted dementia in the pooled sample (aHR 1.9, 95% CI 1.5-2.3). The results persisted even after excluding participants with possible cognitive impairment, accounting for early dementia, and diagnostic overlap with other predementia syndromes. CONCLUSION: MCR is common in older adults, and is a strong and early risk factor for cognitive decline. This clinical approach can be easily applied to identify high-risk seniors in a wide variety of settings

    Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer

    Get PDF
    Background: Functionalized nanoparticles (NPs) are one promising tool for detecting specific molecular targets and combine molecular biology and nanotechnology aiming at modern imaging. We aimed at ligand-directed delivery with a suitable target-biomarker to detect early pancreatic ductal adenocarcinoma (PDAC). Promising targets are galectins (Gal), due to their strong expression in and on PDAC-cells and occurrence at early stages in cancer precursor lesions, but not in adjacent normal tissues. Results: Molecular probes (10-29 AA long peptides) derived from human tissue plasminogen activator (t-PA) were selected as binding partners to galectins. Affinity constants between the synthesized t-PA peptides and Gal were determined by microscale thermophoresis. The 29 AA-long t-PA-peptide-1 with a lactose-functionalized serine revealed the strongest binding properties to Gal-1 which was 25-fold higher in comparison with the native t-PA protein and showed additional strong binding to Gal-3 and Gal-4, both also over-expressed in PDAC. t-PA-peptide-1 was selected as vector moiety and linked covalently onto the surface of biodegradable iron oxide nanoparticles (NPs). In particular, CAN-doped maghemite NPs (CAN-Mag), promising as contrast agent for magnetic resonance imaging (MRI), were selected as magnetic core and coated with different biocompatible polymers, such as chitosan (CAN-Mag-Chitosan NPs) or polylactic co glycolic acid (PLGA) obtaining polymeric nanoparticles (CAN-Mag@PNPs), already approved for drug delivery applications. The binding efficacy of t-PA-vectorized NPs determined by exposure to different pancreatic cell lines was up to 90%, as assessed by flow cytometry. The in vivo targeting and imaging efficacy of the vectorized NPs were evaluated by applying murine pancreatic tumor models and assessed by 1.5 T magnetic resonance imaging (MRI). The t-PA-vectorized NPs as well as the protease-activated NPs with outer shell decoration (CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac) showed clearly detectable drop of subcutaneous and orthotopic tumor staining-intensity indicating a considerable uptake of the injected NPs. Post mortem NP deposition in tumors and organs was confirmed by Fe staining of histopathology tissue sections. Conclusions: The targeted NPs indicate a fast and enhanced deposition of NPs in the murine tumor models. The CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac interlocking steps strategy of NPs delivery and deposition in pancreatic tumor is promising

    European white paper : oropharyngeal dysphagia in head and neck cancer

    Get PDF
    Purpose To develop a European White Paper document on oropharyngeal dysphagia (OD) in head and neck cancer (HNC). There are wide variations in the management of OD associated with HNC across Europe. Methods Experts in the management of specific aspects of OD in HNC across Europe were delegated by their professional medical and multidisciplinary societies to contribute to this document. Evidence is based on systematic reviews, consensus-based position statements, and expert opinion. Results Twenty-four sections on HNC-specific OD topics. Conclusion This European White Paper summarizes current best practice on management of OD in HNC, providing recommendations to support patients and health professionals. The body of literature and its level of evidence on diagnostics and treatment for OD in HNC remain poor. This is in the context of an expected increase in the prevalence of OD due to HNC in the near future. Contributing factors to increased prevalence include aging of our European population (including HNC patients) and an increase in human papillomavirus (HPV) related cancer, despite the introduction of HPV vaccination in various countries. We recommend timely implementation of OD screening in HNC patients while emphasizing the need for robust scientific research on the treatment of OD in HNC. Meanwhile, its management remains a challenge for European professional associations and policymakers.Peer reviewe

    Estimating the prevalence of food risk increasing behaviours in UK kitchens

    Get PDF
    © 2017 Jones et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Foodborne disease poses a serious threat to public health. In the UK, half a million cases are linked to known pathogens and more than half of all outbreaks are associated with catering establishments. The UK Food Standards Agency (FSA) has initiated the UK Food Hygiene Rating Scheme in which commercial food establishments are inspected and scored with the results made public. In this study we investigate the prevalence of food risk increasing behaviours among chefs, catering students and the public. Given the incentive for respondents to misreport when asked about illegal or illicit behaviours we employed a Randomised Response Technique designed to elicit more accurate prevalence rates of such behaviours. We found 14% of the public not always hand-washing immediately after handling raw meat, poultry or fish; 32% of chefs and catering students had worked within 48 hours of suffering from diarrhoea or vomiting. 22% of the public admitted having served meat “on the turn” and 33% of chefs and catering students admitted working in kitchens where such meat was served; 12% of the public and 16% of chefs and catering students admitted having served chicken at a barbeque when not totally sure it was fully cooked. Chefs in fine-dining establishment were less likely to wash their hands after handling meat and fish and those who worked in award winning restaurants were more likely to have returned to work within 48 hours of suffering from diarrhoea and vomiting. We found no correlation between the price of a meal in an establishment, nor its Food Hygiene Rating Score, and the likelihood of any of the food malpractices occurring

    Absence of alpha-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice

    Get PDF
    Despite numerous evidences for neurotoxicity of overexpressed α-synuclein, a protective function was suggested for endogenous α-synuclein and other members of the synuclein family. This protective role is most important for and evident in presynaptic terminals, where synucleins are normally accumulated. However, mice lacking synucleins display no adverse phenotype. In particular, no significant changes in striatal dopamine metabolism and only subtle deficit of dopaminergic neurons in the substantia nigra were found in juvenile or adult mice. To assess whether aging and synuclein deficiency may have additive detrimental effect on the nigrostriatal system, we studied dopaminergic neurons of the substantia nigra and their striatal synapses in 24–26-month-old α-synuclein and γ-synuclein null mutant mice. Significant ∼36% reduction of the striatal dopamine was found in aging α-synuclein, but not γ-synuclein null mutant mice when compared to age-matching wild type mice. This was accompanied by the reduction of TH-positive fibers in the striatum and decrease of striatal levels of TH and DAT. However, no progressive loss of TH-positive neurons was revealed in the substantia nigra of synuclein-deficient aging animals. Our results are consistent with a hypothesis that α-synuclein is important for normal function and integrity of synapses, and suggest that in the aging nervous system dysfunction of this protein could become a predisposition factor for the development of nigrostriatal pathology

    PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina

    Get PDF
    Here, role(s) of pigment epithelial-derived factor (PEDF) and glial-derived neurotrophic factor (GDNF) on photoreceptor development in three-dimensional reaggregates from the retinae of the E6 chick embryo (rosetted spheroids) was investigated. Fully dispersed cells were reaggregated under serum-reduced conditions and supplemented with 50 ng/ml PEDF alone or in combination with 50 ng/ml GDNF. The spheroids were analyzed for cell growth, differentiation, and death using proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, and other immunocytochemical stainings and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) methods. PEDF strongly promoted synthesis of the messenger RNAs for blue and violet cone opsins and to a lesser extent on the red and green cone opsins. This correlated with an increase in the number of cone photoreceptors, as determined by the cone cell marker CERN906. Likewise, PEDF nearly completely inhibited rod differentiation, as detected by immunostaining with anti-rho4D2 and RT-PCR. Furthermore, PEDF accelerated proliferation of cells in the spheroids and inhibited apoptosis. As negative effects, PEDF inhibited the normal histotypic tissue formation of retinal aggregates and reduced the frequency of photoreceptor rosettes and IPL-like areas. Noticeably, supplementation of PEDF-treated cultures with GDNF reversed the effects of PEDF on spheroid morphology and on rod differentiation. This study establishes that PEDF strongly affects three-dimensional retinogenesis in vitro, most notably by inhibiting rod development and supporting proliferation and differentiation of cones, effects which are partially counteracted by GDNF

    Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis

    Get PDF
    Background Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. Methods Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. Results We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. Conclusions Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA
    corecore