31 research outputs found

    Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients

    Get PDF
    Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response heterogeneity are not well understood, and personalized treatment in BD remains elusive. Genetic analyses of the lithium treatment response phenotype may generate novel molecular insights into lithium's therapeutic mechanisms and lead to testable hypotheses to improve BD management and outcomes. We used fixed effect meta-analysis techniques to develop meta-analytic polygenic risk scores (MET-PRS) from combinations of highly correlated psychiatric traits, namely schizophrenia (SCZ), major depression (MD) and bipolar disorder (BD). We compared the effects of cross-disorder MET-PRS and single genetic trait PRS on lithium response. For the PRS analyses, we included clinical data on lithium treatment response and genetic information for n = 2283 BD cases from the International Consortium on Lithium Genetics (ConLi+Gen; www.ConLiGen.org). Higher SCZ and MD PRSs were associated with poorer lithium treatment response whereas BD-PRS had no association with treatment outcome. The combined MET2-PRS comprising of SCZ and MD variants (MET2-PRS) and a model using SCZ and MD-PRS sequentially improved response prediction, compared to single-disorder PRS or to a combined score using all three traits (MET3-PRS). Patients in the highest decile for MET2-PRS loading had 2.5 times higher odds of being classified as poor responders than patients with the lowest decile MET2-PRS scores. An exploratory functional pathway analysis of top MET2-PRS variants was conducted. Findings may inform the development of future testing strategies for personalized lithium prescribing in BD

    HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders

    Get PDF
    Bipolar afective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratifcation are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identifed genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region. To better understand the molecular mechanisms underlying this association, we have genetically imputed the classical alleles of the HLA region in the European patients of the ConLiGen cohort. We found our best signal for amino-acid variants belonging to the HLA-DRB1*11:01 classical allele, associated with a better response to Li (p < 1 × ­10−3; FDR< 0.09 in the recessive model). Alanine or Leucine at position 74 of the HLA-DRB1 heavy chain was associated with a good response while Arginine or Glutamic acid with a poor response. As these variants have been implicated in common infammatory/autoimmune processes, our fndings strongly suggest that HLA-mediated low infammatory background may contribute to the efcient response to Li in BD patients, while an infammatory status overriding Li anti-infammatory properties would favor a weak response

    Association of Attention-Deficit/Hyperactivity Disorder and Depression Polygenic Scores with Lithium Response: A Consortium for Lithium Genetics Study

    Get PDF
    Response to lithium varies widely between individuals with bipolar disorder (BD). Polygenic risk scores (PRSs) can uncover pharmacogenomics effects and may help predict drug response. Patients (N = 2,510) with BD were assessed for long-term lithium response in the Consortium on Lithium Genetics using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. PRSs for attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), and schizophrenia (SCZ) were computed using lassosum and in a model including all three PRSs and other covariates, and the PRS of ADHD (β = −0.14; 95% confidence interval [CI]: −0.24 to −0.03; p value = 0.010) and MDD (β = −0.16; 95% CI: −0.27 to −0.04; p value = 0.005) predicted worse quantitative lithium response. A higher SCZ PRS was associated with higher rates of medication nonadherence (OR = 1.61; 95% CI: 1.34–1.93; p value = 2e−7). This study indicates that genetic risk for ADHD and depression may influence lithium treatment response. Interestingly, a higher SCZ PRS was associated with poor adherence, which can negatively impact treatment response. Incorporating genetic risk of ADHD, depression, and SCZ in combination with clinical risk may lead to better clinical care for patients with BD

    Association of polygenic score for major depression with response to lithium in patients with bipolar disorder

    Get PDF
    Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18–2.01) and European sample: OR = 1.75 (95% CI: 1.30–2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61–4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD

    Make lithium great again – Precisely!

    No full text
    International audienceAbstract Background Despite its pivotal role in prophylaxis for bipolar-I-disorders (BD-I), variability in lithium (Li) response is poorly understood and only a third of patients show a good outcome. Converging research strands indicate that rest–activity rhythms can help characterize BD-I and might differentiate good responders (GR) and non-responders (NR). Methods Seventy outpatients with BD-I receiving Li prophylaxis were categorized as GR or NR according to the ratings on the retrospective assessment of response to lithium scale (Alda scale). Participants undertook 21 consecutive days of actigraphy monitoring of sleep quantity (SQ), sleep variability (SV) and circadian rhythmicity (CR). Results Twenty-five individuals were categorized as GR (36%). After correcting statistical analysis to minimize false discoveries, four variables (intra-daily variability; median activity level; amplitude; and relative amplitude of activity) significantly differentiated GR from NR. The odds of being classified as a GR case were greatest for individuals showing more regular/stable CR (1.41; 95% confidence interval (CI) 1.08, 2.05; p < 0.04). Also, there was a trend for lower SV to be associated with GR (odds ratio: 0.56; 95% CI 0.31, 1.01; p < 0.06). Conclusions To our knowledge, this is the largest actigraphy study of rest–activity rhythms and Li response. Circadian markers associated with fragmentation, variability, amount and/or amplitude of day and night-time activity best-identified GR. However, associations were modest and future research must determine whether these objectively measured parameters, singly or together, represent robust treatment response biomarkers. Actigraphy may offer an adjunct to multi-platform approaches aimed at developing personalized treatments or stratification of individuals with BD-I into treatment-relevant subgroups.Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies

    Unipolar mania: Identification and characterisation of cases in France and the United Kingdom

    No full text
    International audienceBackground: Unipolar mania is a putative subtype of bipolar disorder (BD) in which individuals experience recurrent manic but not major depressive episodes. Few studies of unipolar mania have been conducted in developed countries and none in the UK. This study aimed to identify and characterise people with unipolar mania in the UK and France.Methods: People with unipolar mania were ascertained using a South London UK electronic case register and a French BD case series. Each unipolar mania group was compared to a matched group of people with BD who have experienced depressive episodes.Results: 17 people with unipolar mania were identified in South London and 13 in France. The frequency of unipolar mania as a percentage of the BD clinical population was 1.2% for the South London cohort and 3.3% for the French cohort. In both cohorts, people with unipolar mania experienced more manic episodes than people with BD, and in the French cohort were more likely to experience a psychotic illness onset and more psychiatric admissions. Treatment and self-harm characteristics of people with unipolar mania were similar to people with BD.Limitations: The relatively small number of people with unipolar mania identified by this study limits its power to detect differences in clinical variables.Conclusions: People with unipolar mania can be identified in France and the UK, and they may experience a higher frequency of manic episodes but have similar treatment and self-harm characteristics as people with BD

    Variations in seasonal solar insolation are associated with a history of suicide attempts in bipolar I disorder

    No full text
    Background: Bipolar disorder is associated with circadian disruption and a high risk of suicidal behavior. In a previous exploratory study of patients with bipolar I disorder, we found that a history of suicide attempts was associated with differences between winter and summer levels of solar insolation. The purpose of this study was to confirm this finding using international data from 42% more collection sites and 25% more countries. Methods: Data analyzed were from 71 prior and new collection sites in 40 countries at a wide range of latitudes. The analysis included 4876 patients with bipolar I disorder, 45% more data than previously analyzed. Of the patients, 1496 (30.7%) had a history of suicide attempt. Solar insolation data, the amount of the sun's electromagnetic energy striking the surface of the earth, was obtained for each onset location (479 locations in 64 countries). Results: This analysis confirmed the results of the exploratory study with the same best model and slightly better statistical significance. There was a significant inverse association between a history of suicide attempts and the ratio of mean winter insolation to mean summer insolation (mean winter insolation/mean summer insolation). This ratio is largest near the equator which has little change in solar insolation over the year, and smallest near the poles where the winter insolation is very small compared to the summer insolation. Other variables in the model associated with an increased risk of suicide attempts were a history of alcohol or substance abuse, female gender, and younger birth cohort. The winter/summer insolation ratio was also replaced with the ratio of minimum mean monthly insolation to the maximum mean monthly insolation to accommodate insolation patterns in the tropics, and nearly identical results were found. All estimated coefficients were significant at p < 0.01. Conclusion: A large change in solar insolation, both between winter and summer and between the minimum and maximum monthly values, may increase the risk of suicide attempts in bipolar I disorder. With frequent circadian rhythm dysfunction and suicidal behavior in bipolar disorder, greater understanding of the optimal roles of daylight and electric lighting in circadian entrainment is needed

    Association of polygenic score for major depression with response to lithium in patients with bipolar disorder

    No full text
    Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18–2.01) and European sample: OR = 1.75 (95% CI: 1.30–2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61–4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD

    Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder

    Get PDF
    International audienc
    corecore