21 research outputs found

    A real-life cohort study of immunoglobulin light-chain (AL) amyloidosis patients ineligible for autologous stem cell transplantation due to severe cardiac involvement or advanced disease

    Get PDF
    Objective: To study the outcome of patients with AL amyloidosis who were ineligible for high dose melphalan (HDM) and autologous stem cell transplantation (ASCT).Methods: A real-life retrospective observational cohort study of Dutch patients with AL amyloidosis ineligible for HDM and ASCT was performed at the University Medical Center Groningen from January 2001 until April 2017. Primary outcome measure was overall survival (OS). Secondary outcome measures were hematological response (HR), organ responses, and treatment toxicity.Results: Eighty-four patients were included. Ineligibility was due to NYHA class III/IV (n = 58), otherwise advanced disease (n = 11), advanced age (n = 14), or treatment refusal (n = 1). Early death (<3 months) rate was high (44%). Median OS improved from 4 months in period 2001-2009 (n = 36) to 8 months in period 2009-2017 (n = 48, p = .02). HR was seen in 29%, and 42% of the patients, respectively. Median OS was 36 months after induction treatment with bortezomib (n = 32) and 18 months with immunomodulatory imide drug (IMID) (n = 16), both higher than median OS (7 months) with other regimens (n = 27). Incidence of toxicity was high (51%).Conclusion: OS improved in this high-risk group over the years, especially after introduction of new treatment modalities. However, early death rate remains high, illustrating the need for more effective treatment

    Neurofilament light chain, a biomarker for polyneuropathy in systemic amyloidosis

    Get PDF
    OBJECTIVE: To study serum neurofilament light chain (sNfL) in amyloid light chain (AL) amyloidosis patients with and without polyneuropathy (PNP) and to corroborate previous observations that sNfL is increased in hereditary transthyretin-related (ATTRv) amyloidosis patients with PNP. METHODS: sNfL levels were assessed retrospectively in patients with AL amyloidosis with and without PNP (AL/PNP+ and AL/PNP-, respectively), patients with ATTRv amyloidosis and PNP (ATTRv/PNP+), asymptomatic transthyretin (TTR) gene mutation carriers (TTRv carriers) and healthy controls. Healthy controls (HC) were age- and sex-matched to both AL/PNP- (HC/AL) and TTRv carriers (HC/TTRv). The single-molecule array (Simoa) assay was used to assess sNfL levels. RESULTS: sNfL levels were increased both in 10 AL/PNP+ patients (p  I) had the highest sNfL levels compared to patients with early PNP (PND-score I) (p = .05). sNfL levels did not differ between TTRv carriers and HC/TTRv individuals. In the group comprising all healthy controls and in the group of TTRv carriers, sNfL levels correlated with age. CONCLUSION: sNfL levels are increased in patients with PNP in both AL and ATTRv amyloidosis and are related to severity of PNP in ATTRv amyloidosis. sNfL is a promising biomarker to detect PNP, not only in ATTRv but also in AL amyloidosis

    Electron impact ionization and fragmentation of biofuels

    Get PDF
    We present in this article, a review of our recent experimental and theoretical studies published in the literature on electron impact ionization and fragmentation of the primary alcohols methanol, ethanol, 1-propanol and 1-butanol (C1–C4). We discuss the mass spectra (MS) of these alcohols, measured for the electron impact energy of 70 eV and also, total (TICS) and partial (PICS) ionization cross sections in the energy range from 10 to 100 eV, which revealed the probability of forming different cations, by either direct or dissociative ionization. These experimental TICS are summarized together with theoretical values, calculated using the Binary-encounter Bethe (BEB) and the independent atom model with the screening corrected additivity rule (IAM-SCAR) methods. Additionally, we compared data of appearance energies – AE and discussed the application of the extended Wannier theory to PICS in order to produce the ionization and ionic fragmentation thresholds for the electron impact of these alcohols

    Two Crystal Structures Demonstrate Large Conformational Changes in the Eukaryotic Ribosomal Translocase

    No full text
    Two crystal structures of yeast translation elongation factor 2 (eEF2) were determined: the apo form at 2.9 Å resolution and eEF2 in the presence of the translocation inhibitor sordarin at 2.1 Å resolution. The overall conformation of apo eEF2 is similar to that of its prokaryotic homolog elongation factor G (EF-G) in complex with GDP. Upon sordarin binding, the three tRNA-mimicking C-terminal domains undergo substantial conformational changes, while the three N-terminal domains containing the nucleotide-binding site form an almost rigid unit. The conformation of eEF2 in complex with sordarin is entirely different from known conformations observed in crystal structures of EF-G or from cryo-EM studies of EF-G–70S complexes. The domain rearrangements induced by sordarin binding and the highly ordered drug-binding site observed in the eEF2–sordarin structure provide a high-resolution structural basis for the mechanism of sordarin inhibition. The two structures also emphasize the dynamic nature of the ribosomal translocase

    The Laminin 511/521 binding site on the Lutheran blood group glycoprotein is located at the flexible junction of Ig domains 2 and 3.

    Get PDF
    The Lutheran blood group glycoprotein, first discovered on erythrocytes, is widely expressed in human tissues. It is a ligand for the α5 subunit of Laminin 511/521, an extracellular matrix protein. This interaction may contribute to vaso-occlusive events that are an important cause of morbidity in sickle cell disease. Using x-ray crystallography, small-angle x-ray scattering, and site-directed mutagenesis, we show that the extracellular region of Lutheran forms an extended structure with a distinctive bend between the second and third immunoglobulin-like domains. The linker between domains 2 and 3 appears to be flexible and is a critical determinant in maintaining an overall conformation for Lutheran that is capable of binding to Laminin. Mutagenesis studies indicate that Asp312 of Lutheran and the surrounding cluster of negatively charged residues in this linker region form the Laminin-binding site. Unusually, receptor binding is therefore not a function of the domains expected to be furthermost from the plasma membrane. These studies imply that structural flexibility of Lutheran may be essential for its interaction with Laminin and present a novel opportunity for the development of therapeutics for sickle cell disease
    corecore