103 research outputs found

    Fine Guidance Sensing for Coronagraphic Observatories

    Get PDF
    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized

    The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis

    Get PDF
    The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis.BackgroundDuring glomerulogenesis, visceral glomerular epithelial cells (VECs) exit the cell cycle and become terminally differentiated and quiescent. In contrast to other resident glomerular cells, VECs undergo little if any proliferation in response to injury. However, the mechanisms for this remain unclear. Cell proliferation is controlled by cell-cycle regulatory proteins where the cyclin-dependent kinase inhibitor p21Cip1,WAF1 (p21) inhibits cell proliferation and is required for differentiation of many nonrenal cell types.MethodsTo test the hypothesis that p21 is required to maintain a differentiated and quiescent VEC phenotype, experimental glomerulonephritis was induced in p21 knockout (-/-) and p21 wild-type (+/+) mice with antiglomerular antibody. DNA synthesis (proliferating cell nuclear antigen, bromodeoxyuridine staining), VEC proliferation (multilayers of cells in Bowman's space), matrix accumulation (periodic acid-Schiff, silver staining), apoptosis (TUNEL), and renal function (serum urea nitrogen) were studied on days 5 and 14 (N = 6 per time point). VECs were identified by location, morphology, ezrin staining, and electron microscopy. VEC differentiation was measured by staining for Wilms’ tumor-1 gene.ResultsKidneys from unmanipulated p21-/- mice were histologically normal and did not have increased DNA synthesis, suggesting that p21 was not required for the induction of VEC terminal differentiation. Proliferating cell nuclear antigen and bromodeoxyuridine staining was increased 4.3- and 3.3-fold, respectively, in p21-/- mice with glomerulonephritis (P < 0.0001 vs. p21+/+ mice). At each time point, VEC proliferation was also increased in nephritic p21-/- mice (P < 0.0001 vs. p21+/+ mice). VEC re-entry into the cell cycle was associated with the loss of Wilms’ tumor-1 gene staining. Nephritic p21-/- mice had increased extracellular matrix protein accumulation and apoptosis and decreased renal function (serum urea nitrogen) compared with p21+/+ mice (P < 0.001).ConclusionThese results show that the cyclin kinase inhibitor p21 is not required by VECs to attain a terminally differentiated VEC phenotype. However, the loss of p21, in disease states, is associated with VEC re-entry into the cell cycle and the development of a dedifferentiated proliferative phenotype

    Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes

    Get PDF
    Innate immune sensing of viral nucleic acids triggers type I interferon (IFN) production, which activates interferon-stimulated genes (ISGs) and directs a multifaceted antiviral response. ISGs can also be activated through IFN-independent pathways, although the precise mechanisms remain elusive. Here we found that the cytosolic exonuclease Trex1 regulates the activation of a subset of ISGs independently of IFN. Both Trex1−/− mouse and TREX1-mutant human cells express high levels of antiviral genes and are refractory to viral infections. The IFN-independent activation of antiviral genes in Trex1−/− cells requires STING, TBK1 and IRF3 and IRF7. We also found that Trex1-deficient cells display expanded lysosomal compartment, altered subcellular localization of the transcription factor EB (TFEB), and reduced mTORC1 activity. Together, our data identify Trex1 as a regulator of lysosomal biogenesis and IFN-independent activation of antiviral genes, and shows dysregulation of lysosomes can elicit innate immune responses

    Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes

    Get PDF
    Innate immune sensing of viral nucleic acids triggers type I interferon (IFN) production, which activates interferon-stimulated genes (ISGs) and directs a multifaceted antiviral response. ISGs can also be activated through IFN-independent pathways, although the precise mechanisms remain elusive. Here we found that the cytosolic exonuclease Trex1 regulates the activation of a subset of ISGs independently of IFN. Both Trex1−/− mouse and TREX1-mutant human cells express high levels of antiviral genes and are refractory to viral infections. The IFN-independent activation of antiviral genes in Trex1−/− cells requires STING, TBK1 and IRF3 and IRF7. We also found that Trex1-deficient cells display expanded lysosomal compartment, altered subcellular localization of the transcription factor EB (TFEB), and reduced mTORC1 activity. Together, our data identify Trex1 as a regulator of lysosomal biogenesis and IFN-independent activation of antiviral genes, and shows dysregulation of lysosomes can elicit innate immune responses

    ACCESS – A Concept Study for the Direct Imaging and Spectroscopy of Exoplanetary Systems

    Get PDF
    ACCESS is one of four medium-class mission concepts selected for study in 2008-9 by NASA's Astrophysics Strategic Mission Concepts Study program. ACCESS evaluates a space observatory designed for extreme high-contrast imaging and spectroscopy of exoplanetary systems. An actively-corrected coronagraph is used to suppress the glare of diffracted and scattered starlight to contrast levels required for exoplanet imaging. The ACCESS study considered the relative merits and readiness of four major coronagraph types, and modeled their performance with a NASA medium-class space telescope. The ACCESS study asks: What is the most capable medium-class coronagraphic mission that is possible with telescope, instrument, and spacecraft technologies available today? Using demonstrated high-TRL technologies, the ACCESS science program surveys the nearest 120+ AFGK stars for exoplanet systems, and surveys the majority of those for exozodiacal dust to the level of 1 zodi at 3 AU. Coronagraph technology developments in the coming year are expected to further enhance the science reach of the ACCESS mission concept

    A Proinflammatory Cytokine Inhibits P53 Tumor Suppressor Activity

    Get PDF
    p53 has a key role in the negative regulation of cell proliferation, in the maintenance of genomic stability, and in the suppression of transformation and tumorigenesis. To identify novel regulators of p53, we undertook two functional screens to isolate genes which bypassed either p53-mediated growth arrest or apoptosis. In both screens, we isolated cDNAs encoding macrophage migration inhibitory factor (MIF), a cytokine that was shown previously to exert both local and systemic proinflammatory activities. Treatment with MIF overcame p53 activity in three different biological assays, and suppressed its activity as a transcriptional activator. The observation that a proinflammatory cytokine, MIF, is capable of functionally inactivating a tumor suppressor, p53, may provide a link between inflammation and tumorigenesis

    Nitrite-derived nitric oxide reduces hypoxia-inducible factor 1α-mediated extracellular vesicle production by endothelial cells

    Get PDF
    Introduction Extracellular vesicles (EVs) are small, spherical particles enclosed by a phospholipid bilayer (∼30–1000 nm) released from multiple cell types, and have been shown to have pathophysiological roles in a plethora of disease states. The transcription factor hypoxia-inducible factor-1 (HIF-1) allows for adaptation of cellular physiology in hypoxia and may permit the enhanced release of EVs under such conditions. Nitric oxide (NO) plays a pivotal role in vascular homeostasis, and can modulate the cellular response to hypoxia by preventing HIF-1 accumulation. We aimed to selectively target HIF-1 via sodium nitrite (NaNO2) addition, and examine the effect on endothelial EV, size, concentration and function, and delineate the role of HIF-1 in EV biogenesis. Methods Endothelial (HECV) cells were exposed to hypoxic conditions (1% O2, 24 h) and compared to endothelial cells exposed to normoxia (21% O2) with and without the presence of sodium nitrite (NaNO2) (30 μM). Allopurinol (100 μM), an inhibitor of xanthine oxidoreductase, was added both alone and in combination with NaNO2 to cells exposed to hypoxia. EV and cell preparations were quantified by nanoparticle tracking analysis and confirmed by electron microscopy. Western blotting and siRNA were used to confirm the role of HIF-1α and HIF-2α in EV biogenesis. Flow cytometry and time-resolved fluorescence were used to assess the surface and intravesicular protein content. Results Endothelial (HECV) cells exposed to hypoxia (1% O2) produced higher levels of EVs compared to cells exposed to normoxia. This increase was confirmed using the hypoxia-mimetic agent desferrioxamine. Treatment of cells with sodium nitrite (NaNO2) reduced the hypoxic enhancement of EV production. Treatment of cells with the xanthine oxidoreductase inhibitor allopurinol, in addition to NaNO2 attenuated the NaNO2-attributed suppression of hypoxia-mediated EV release. Transfection of cells with HIF-1α siRNA, but not HIF-2α siRNA, prior to hypoxic exposure prevented the enhancement of EV release. Conclusion These data provide evidence that hypoxia enhances the release of EVs in endothelial cells, and that this is mediated by HIF-1α, but not HIF-2α. Furthermore, the reduction of NO2− to NO via xanthine oxidoreductase during hypoxia appears to inhibit HIF-1α-mediated EV production
    corecore