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Highlights 23 

 Hypoxia-inducible factor 1α, but not 2α, mediates extracellular vesicle release in 24 

endothelial cells 25 

 Nitrite-derived nitric oxide increases HIF-1α degradation, and subsequently 26 

reduces extracellular vesicle production 27 

 This effect is attenuated by inhibition of xanthine oxidoreductase, preventing the 28 

conversion of nitrite to nitric oxide.    29 
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Summary 30 

Introduction: Extracellular vesicles (EVs) are small, spherical particles enclosed by a phospholipid 31 

bilayer (~30-1000nm) released from multiple cell types, and have been shown to have 32 

pathophysiological roles in a plethora of disease states. The transcription factor hypoxia-inducible 33 

factor-1 (HIF-1) allows for adaptation of cellular physiology in hypoxia and may permit the enhanced 34 

release of EVs under such conditions. Nitric oxide (NO) plays a pivotal role in vascular homeostasis, 35 

and can modulate the cellular response to hypoxia by preventing HIF-1 accumulation. We aimed to 36 

selectively target HIF-1 via sodium nitrite (NaNO2) addition, and examine the effect on endothelial 37 

EV, size, concentration and function, and delineate the role of HIF-1 in EV biogenesis.  38 

Methods: Endothelial (HECV) cells were exposed to hypoxic conditions (1% O2, 24 hours) and 39 

compared to endothelial cells exposed to normoxia (21% O2) with and without the presence of sodium 40 

nitrite (NaNO2) (30 µM). Allopurinol (100 µM), an inhibitor of xanthine oxidoreductase, was added 41 

both alone and in combination with NaNO2 to cells exposed to hypoxia. EV and cell preparations 42 

were quantified by nanoparticle tracking analysis and confirmed by electron microscopy. Western 43 

blotting and siRNA were used to confirm the role of HIF-1α and HIF-2α in EV biogenesis. Flow 44 

cytometry and time-resolved fluorescence were used to assess the surface and intravesicular protein 45 

content. 46 

Results: Endothelial (HECV) cells exposed to hypoxia (1% O2) produced higher levels of EVs 47 

compared to cells exposed to normoxia. This increase was confirmed using the hypoxia-mimetic 48 

agent desferrioxamine. Treatment of cells with sodium nitrite (NaNO2) reduced the hypoxic 49 

enhancement of EV production. Treatment of cells with the xanthine oxidoreductase inhibitor 50 

allopurinol, in addition to NaNO2 attenuated the NaNO2-attributed suppression of hypoxia-mediated 51 

EV release. Transfection of cells with HIF-1α siRNA, but not HIF-2α siRNA, prior to hypoxic 52 

exposure prevented the enhancement of EV release.  53 

Conclusion: These data provide evidence that hypoxia enhances the release of EVs in endothelial 54 

cells, and that this is mediated by HIF-1α, but not HIF-2α. Furthermore, the reduction of NO2
- to NO 55 

via xanthine oxidoreductase during hypoxia appears to inhibit HIF-1α-mediated EV production.  56 

Key words: Extracellular vesicles, hypoxia, hypoxia-inducible factor, nitrite, nitric oxide 57 
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Abbreviations 59 

Extracellular vesicles (EVs) 60 

Hypoxia-inducible factor 1 (HIF-1) 61 

Nitrate (NO3
-) 62 

Nitrite (NO2
-) 63 

Nitric oxide (NO) 64 

Nanoparticle tracking analysis (NTA) 65 

Sodium nitrite (NaNO2) 66 

Time-resolved fluorescence (TRF)  67 
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1. Introduction 68 

The production of extracellular vesicles (EVs) is a common feature of eukaryotic cells, including 69 

platelets, leukocytes, and endothelial cells [1]. EVs are spherical, submicron structures enclosed by a 70 

phospholipid bilayer, containing a variety of proteins, mRNAs and microRNAs [2]. Their application 71 

to modulate physiology is complex, with evidence for them both augmenting and alleviating disease, 72 

depending on their cellular origin and subsequent biophysical composition [3]. Elevated levels of EVs 73 

have been shown to have pathophysiological roles in a plethora of disease states, including cancer [4–74 

6], neurodegenerative disorders [7–10], and cardiovascular disease [11–13]. Specifically, endothelial 75 

cell derived EVs have been shown to express tissue factor, suggesting a role in augmenting the 76 

coagulation cascade [14]. Additionally, EVs from patients with myocardial infarction have been 77 

shown to induce endothelial dysfunction ex vivo [15].  It has recently been shown that endothelial 78 

cells enhance EV secretion following temporary hypoxia exposure in vivo [16,17], a fundamental 79 

feature of the aforementioned diseases and resulting pathologies [18–20]. Indeed, EVs derived from 80 

endothelial cells exposed to hypoxia have been shown to produce a markedly altered RNA and protein 81 

composition, although the function of these EVs remains undetermined [21].   82 

The adaptation of cellular physiology in response to hypoxia is largely mediated by the transcription 83 

factor hypoxia-inducible factor (HIF)-1, which promotes the transcription of genes involved in cell 84 

proliferation, metastasis, angiogenesis, and vascular remodelling [22,23]. HIF is comprised of an 85 

oxygen regulated HIF-α subunit (HIF-1α or HIF-2α) and the constitutively expressed HIF-1β. Whilst 86 

HIF-1α is ubiquitously expressed, HIF-2α is detected predominantly in vascular endothelial cells [24]. 87 

The HIF-α subunit is targeted for degradation under normoxic conditions by the O2-dependent HIF-α 88 

prolyl hydroxylase enzymes. These enzymes hydroxylate two conserved prolyl residues (Pro 564 and 89 

Pro402) in the central oxygen-dependent degradation domain of the HIF-α subunit (both HIF-1α and 90 

HIF-2α), which promotes the binding of the Von Hippel-Lindau protein, allowing ubiquitination and 91 

subsequent degradation [25,26]. Inhibition of these enzymes in hypoxia prevents the degradation of 92 

HIF-α, allowing regulation of its transcriptional target genes [25]. HIF has been shown to increase 93 

expression of several proteins involved in cytoskeletal changes [27], a mechanism thought to be 94 

implicated in augmented EV release [28]. Thus, selective targeting and modulation of HIF-α could 95 

modulate endothelial cell EV release.  96 

Endothelial-derived nitric oxide (NO) plays a pivotal role in vascular homeostasis, highlighted by the 97 

deficiency of NO prevalent in cardiovascular disease states [29]. NO can modulate the cellular 98 

response to hypoxia by preventing the stabilization of HIF-α via an increase in prolyl hydroxylase-99 

mediated degradation [30,31]. Previously, impaired endogenous NO production in HUVECs has been 100 

shown to increase EV formation [32]. Recently, the inorganic anions nitrate (NO3
-) and nitrite (NO2

-), 101 
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once thought to be inert end products of NO metabolism, have been shown to be bioactive reservoirs 102 

for NO bioactivity, particularly during hypoxia [33,34]. NO3
- is reduced to NO2

- via commensal 103 

bacteria present in the oral cavity. NO2
- can subsequently be reduced through reaction with various 104 

proteins that possess NO2
- reductase activity, including Xanthine Oxidoreductase (XOR) [35,36], 105 

heme globins [37,38], and components of the mitochondrial electron transport chain [39,40]. 106 

Here, we aimed to elucidate the role of both HIF-1α and HIF-2α in endothelial EV release, and 107 

selectively target their expression in hypoxia via sodium nitrite (NaNO2) addition, and investigate the 108 

effect on endothelial cell EV production.   109 
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2. Methods 110 

2.1 Cell culture & viability 111 

Human (HECV) endothelial cells were purchased from Interlab Cell Line Collection (ICLC, Naples, 112 

Italy). This cell line was used as a convenient model of endothelial cell behaviour. HECVs were 113 

maintained in Dulbecco’s Modified Eagle Medium (DMEM, PAA Laboratories Ltd, UK) 114 

supplemented with 10% foetal calf serum (FCS, PAA Laboratories Ltd, UK), and 1% 115 

penicillin/streptomycin (P/S, Gibco®, Life Technologies, UK). Human umbilical vein endothelial 116 

cells (HUVECs) were isolated from umbilical cords as previously described [41]. Human umbilical 117 

cords were obtained from the Antenatal Clinic, University Hospital Wales. Ethical approval was 118 

obtained from the Research Ethics Committee (REC) (REC reference: 14/NW/1459). HUVECs were 119 

maintained in M199 medium, supplemented with 10% foetal calf serum, 1% penicillin/streptomycin, 120 

human epidermal growth factor (1 ng/mL, Invitrogen, UK) and hydrocortisone (1 ng/mL, Sigma-121 

Aldrich, UK). HUVECs were used at passage 0 and not sub-cultured. Cells were cultured using T25 122 

cm2 flasks (Cellstar®, Greiner Bio-One, Germany) and maintained in an incubator at 37 °C and 5% 123 

CO2.  Cell counts were undertaken using trypan blue exclusion (1:1 v/v) and a Cellometer Auto T4 124 

(Nexcelom Biosciences, USA). Cell viability and apoptosis were determined using MTS and Caspase-125 

Glo 3/7 assays (Promega, Southampton, UK), respectively, according to the manufacturers' 126 

instructions.  127 

2.2 Hypoxia exposure 128 

Hypoxic experiments were performed using an I-CO2N2 regulated InVivo 400 hypoxia workstation 129 

(Ruskinn, Bridgend, UK). Upon cells reaching ~80% confluency, culture medium was removed. 130 

HECVs were washed with phosphate-buffered saline (PBS) (Fisher Scientific, UK)  and incubated 131 

with 10 mL EV-free serum free medium (SFM) for 24-hours. Cells were cultured at either normoxia 132 

(21% O2, 5% CO2, 37 °C) or hypoxia (1-20% O2, 5% CO2, 37 °C). The hypoxia mimetic agent 133 

desferrioxamine was added (100 µM) to HECVs incubated in normoxia to confirm the role of hypoxia 134 

in EV formation.  135 

2.3 Extracellular vesicle isolation 136 

EVs were isolated direct from cell culture as previously described [42]. Cells were cultured in serum-137 

free medium (SFM) for 24 hours prior to EV isolation to avoid contamination from foetal calf serum. 138 

Cell culture medium was extracted direct from the culture flask and subjected to differential ultra-139 

centrifugation. Culture medium was spun at 500 × g for 10 min to remove any cells in suspension. 140 

The supernatant was then centrifuged at 15,000 × g for 15 min to remove any cell debris. Finally, 141 
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supernatants were ultracentrifuged at 100,000 × g for 60 min to pellet EVs. This pellet was then 142 

resuspended in 1 x sterile PBS, stored at 4°C and analysed within 1 week of isolation. 143 

2.4 EV size and concentration analysis 144 

Size and concentration distributions of EVs were determined using nanoparticle tracking analysis 145 

(NTA, NanoSight LM10 system, UK) as described previously [43]. NTA is a laser illuminated 146 

microscopic technique equipped with a 642 nm laser and a high sensitivity digital camera system 147 

(OrcaFlash2.8, Hamamatsu, NanoSight Ltd) that determines the Brownian motion of nanoparticles in 148 

real-time to assess size and concentration. Sixty-second videos were recorded and particle movement 149 

was analysed using NTA software (version 2.3). Camera shutter speed was fixed at 30.01 ms and 150 

camera gain to 500. Camera sensitivity and detection threshold were (11–14) and (4–6), respectively. 151 

A representative NTA trace can be seen in Appendix Figure A1. EV samples were diluted in EV-free 152 

sterile water (Fresenius Kabi, Runcorn, UK). Samples were run in quintuplicate, from which EV 153 

distribution, size and average concentration were calculated. EV concentrations were then normalised 154 

to cell count and expressed as EVs/cell. 155 

2.5 Silencing RNA (siRNA) transfection 156 

siRNA specific for HIF-1α (Dharmacon SMARTpool, UK) was mixed with siRNA transfection 157 

reagent (Dharmacon RNAi Technologies) at a ratio of 20:1 and incubated at room temperature for 20 158 

minutes. This mix was added to the medium of ~50% confluent HECV cells to give a final 159 

concentration of 100 nM per flask. Control experiments consisted of transfection with the ON-160 

TARGETplus non-targeting siRNA control (100 nM; Dharmacon RNAi Technologies). Cells were 161 

incubated in medium containing either HIF-1α siRNA or control siRNA for 48-72 hours prior to 162 

hypoxia exposure for 24 hours. 163 

For HIF-2α silencing, the siRNA duplex was mixed with siRNA transfection reagent (Santa Cruz 164 

Biotechnology, USA) (1:1 ratio) in transfection medium and incubated at room temperature for 30 165 

minutes before being added onto the cells. Cells were incubated for 5 hours before 2x DMEM (20% 166 

FCS, 2% P/S) was added. Cells were incubated for an additional 24 hours before replacing the 167 

medium with fresh 1x DMEM (10% FCS, 1% P/S). Cells were incubated for an additional 48-72 168 

hours prior to hypoxia exposure for 24 hours. 169 

2.6 Nitrite treatment and xanthine oxidoreductase inhibition 170 

Preliminary experiments established a NaNO2 dose-effect curve (0.3-300 µM) where 30µM was 171 

discovered to be the optimal dose and was used for all subsequent experiments (Appendix Figure A2). 172 

Cells were incubated in either hypoxia (1% O2), or normoxia for 24-hours. Allopurinol (100 µM) was 173 

added to inhibit the hypoxia mediated reduction of NO2
- to NO by xanthine oxidoreductase in HECVs 174 
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exposed to hypoxia for 24 hours. The NO donor S-Nitrosoglutathione (GSNO, 10 µM) was also 175 

added to cells to confirm the effect of NO on EV production.  176 

2.7 Western blot 177 

HECVs were washed with phosphate-buffered saline (PBS) and lysed in ice-cold Pierce® RIPA lysis 178 

buffer (ThermoFisher, UK). The lysates underwent centrifugation at 13,000 x g for 20 min at 4 °C. 179 

The supernatants were collected and their protein concentrations were determined by a Pierce® BCA 180 

Protein Assay Kit (ThermoFisher, UK), measured on a BMG CLARIOstar (BMG Labtech, UK). Cell 181 

homogenates (80 µg protein) were separated by a 10% sodium dodecyl sulfate-polyacrylamide gel 182 

(SDS-PAGE) and transferred to a nitrocellulose membrane. After blots had been washed with TBST 183 

(10 mM Tris, 150 mM NaCl, 0.05% Tween-20; pH 7.6) the membrane was blocked with 5% 184 

skimmed milk powder in TBST for 1 hour and incubated overnight at 4 °C with a purified mouse 185 

monoclonal antibody against human HIF-1α (BD Biosciences, UK), HIF-2α (Santa Cruz, USA) or a 186 

rabbit monoclonal antibody against β-actin (Sigma-Aldrich, UK) at dilutions recommended by the 187 

manufacturers. The membranes were washed and then incubated for 1 hour with the required 188 

secondary IgG horseradish peroxidase labelled antibody (goat anti-mouse or goat anti-rabbit). 189 

Detection was performed using West Femto chemiluminescence detection reagent (Pierce and Warner 190 

Ltd, UK) and exposed to photographic film (Amersham™ Hyperfilm, GE Healthcare) in a dark room. 191 

Films were developed using Kodak™ -D19 developer and fixer (Sigma-Aldrich). 192 

2.8 Electron microscopy 193 

Scanning electron microscopy (EM) images were generated to confirm EV release under normoxic 194 

and hypoxic (1% O2) conditions. HECVs were washed in PBS and fixed in glutaraldehyde (Sigma-195 

Aldrich, UK) in Sorensen's phosphate buffer (1% v/v) at room temperature for 1 hour. Samples were 196 

then dehydrated through graded isopropanol at 50, 70, 90 and 100% for 10 minutes each, followed by 197 

three exchanges in hexamethyldisilazane (Sigma-Aldrich, UK). Samples were then air dried and 198 

splutter-coated with gold and viewed at 5kV using a JEOL 840A scanning electron microscope (JEOL 199 

Tokyo, Japan).  200 

Isolated EVs were visualised using transmission EM. Isolated EVs in PBS were negatively stained by 201 

placing carbon-coated grids onto 50 μL droplet of reagent for 30 minutes. Vesicles were fixed in 1% 202 

glutaraldehyde in Sorensen's phosphate buffer (1:1 v/v) for 10 minutes at room temperature. Grids 203 

were then washed (3 x 1 min in PBS and 6 x 1 min in water) before negative staining with 2% (w/v) 204 

uranyl acetate for 10 min. Surplus staining was removed from grids and allowed to air dry before EV 205 

samples were examined in a Philips CM12 TEM (FEI UK Ltd) at 80 kV.  206 

2.9 Characterisation of EVs 207 
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Flow cytometry was used to assess the surface adhesion molecule profile of HECVs incubated at both 208 

normoxia and hypoxia, and their corresponding EVs. Antibodies used for cytometric analysis were 209 

obtained from Biolegend® (BioLegend, San Diego, CA, USA). They include; anti-CD62P [P-210 

selectin], anti-CD51P [VCAM-1], anti-CD54 [ICAM-1], anti-CD562E [E-selectin], anti-CD31 211 

[PECAM-1], and annexin V-FITC. Annexin V positivity was chosen to reflect the extent of 212 

phosphotidylserine (PS) exposure on the surface of EVs. All antibodies were allophycocyanin 213 

conjugated and mouse anti-human. Flow cytometry was performed using a BD Canto dual laser bench 214 

top flow cytometer, equipped with 488 nm and 633 nm lasers and BD FACS Diva software (v 5.0.3). 215 

Carboxylated polysterene beads (200, 500 and 1000 nm in diameter, (IZON, Oxford, UK)) were used 216 

to set the EV gate, and were distinguishable as three distinct populations. HECVs were analysed for 217 

forward scatter area and side scatter area whilst EVs were run on forward scatter area and side scatter 218 

area that were set to logarithmic scale. Acquisition was terminated upon recording 10,000 events, 219 

gated based on their forward scatter and side scatter characteristics. Fluorescence minus one (FMO) 220 

stains were used to set the positive gates for each antibody. Appendix Figure A3 shows a 221 

representative dot plot showing fluorescence-minus-one (A) and the EV gating strategy (B).  222 

Time-resolved fluorescence was used to assess the surface protein and content of the isolated EVs 223 

derived from both normoxia and hypoxia, as described previously [44]. 1x109 EVs were loaded onto a 224 

high protein binding 96-well plate (Greiner Bio-One, Germany) overnight at 4°C, before non-specific 225 

sites were blocked with 1% BSA (R&D Systems) for two hours. EVs were permeabilised using a 226 

RIPA lysis buffer (Santa Cruz, CA, USA) to allow analysis of intravesicular exosomal and endothelial 227 

markers. EVs were incubated overnight with mouse anti-human antibodies for the exosomal markers 228 

CD9, ALIX and TSG101, the endothelial marker CD144 (VE-Cadherin) and HIF-1α (Abcam, 229 

Cambridge, UK) overnight at 4°C. Markers were detected using a biotinylated anti-mouse igG 230 

secondary antibody (PerkinElmer, Buckinghamshire, UK) and a streptavidin:europium conjugate 231 

(PerkinElmer, Buckinghamshire, UK) and measured by time-resolved fluorescence (delay time: 400 232 

µs, measurement window: 400 µs) using a BMG Labtech FLUOstar Optima. 233 

2.10 Statistics 234 

Data were analysed using GraphPad Prism (version 5.0; GraphPad Software Inc., San Diego, USA). 235 

D'Agostino's K-squared test was used to check data for normality. A 2way ANOVA with Bonferroni 236 

correction was used to compare size distribution differences between hypoxia and normoxia. A 1way 237 

ANOVA followed by either a Dunnett’s post-test to compare all groups to the normoxic control, or a 238 

Tukey’s test to compare all pairs of columns with each other. Results are expressed as mean ± SEM 239 

unless stated. A p-value of <0.05 was regarded as statistically significant.  240 

  241 
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3. Results 242 

3.1 Effect of hypoxia on EV size, concentration and distribution 243 

Hypoxia exposure (1%, 2% and 5% O2) enhanced EV production in comparison to HECVs 244 

maintained at normoxia (1% O2: 1766 ± 63.4 EVs/cell, 2% O2: 1179 ± 59 EVs/cell, 5% O2: 659 ± 48 245 

EVs/cell vs 21% O2: 133 ± 15 EVs/cell, Figure 1A, p < 0.001). However, 10% and 20% O2 did not 246 

change EV production (10% O2: 190.2 ± 40 EVs/cell, 20% O2: 218 ± 57 EVs/cell p>0.05) compared 247 

to normoxia (Figure 1A). Hypoxic conditions did not affect EV mean size: 21% O2: 134 ± 8 nm; 1% 248 

O2: 131 ± 27 nm; 2% O2: 133 ± 33 nm; 5% O2: 143 ± 38 nm; 10% O2: 133 ± 38 nm, 20% O2: 132 ± 249 

30 nm, p> 0.05. Western blot analysis revealed the presence of HIF-1α in cells exposed to 1-5% O2 250 

for 24 hours. HIF-1α was not detected in cells exposed to 10% or 20% O2 (Figure 1B). 251 

On assessment of EV size distribution (split by 50 nm bin size for analysis), cells exposed to 1% O2 in 252 

particular had an elevated EV concentration within a diameter range of 51 – 350 nm (51 – 100 nm: 253 

21% O2; 16 ± 5 EVs/cell vs 1% O2; 205 ± 44 EVs/ cell. 101 – 150 nm: 21% O2; 33 ± 8 EVs/cell vs 254 

1% O2; 441 ± 66 EVs/cell.  151 – 200 nm: 21% O2; 29 ± 5 EVs/cell vs 1% O2; 401 ± 26 EVs/ cell. 255 

201 – 250 nm: 21% O2; 22 ± 4 EVs/cell vs 1% O2; 300 ± 18 EVs/ cell. 251-300 nm: 21% O2; 14 ± 3 256 

EVs/cell vs 1% O2; 210 ± 30 EVs/ cell. 301-350 nm: 1% O2: 7 ± 2 EVs/cell vs 1% O2: 132 ± 22 257 

EVs/cell (p < 0.001 for all comparisons). EV distribution between 351 – 1 µm was similar between 258 

normoxic and hypoxic cells, p > 0.05 (Figure 2). 259 

Cells incubated in normoxia exposed to the hypoxia mimetic agent desferrioxamine (100 µM) 260 

produced significantly higher EVs compared to cells exposed to normoxia alone (1212 ± 109 EVs/cell 261 

vs 133 ± 15.2 EVs/cell,  p < 0.001). The addition of desferrioxamine to cells already exposed to 262 

hypoxia (1% O2) had no influence on EV production compared to hypoxia exposure alone (1% O2: 263 

1673 ± 60 EVs/cell vs 1% O2 DFO: 1733 ± 87 EVs/cell, p > 0.05) (Figure 3A). Chemically induced 264 

hypoxia by desferrioxamine was confirmed by Western blot detection of HIF-1α in cells incubated in 265 

normoxia. (Figure 3B).  266 

3.2 Viability and apoptosis 267 

Cells exposed to 1% O2 had similar caspase 3/7 activity to control cells (688 ± 7 vs 612 ± 73, relative 268 

luminescence units (RLU) p > 0.05). No difference was found in cell viability for cells exposed to 1% 269 

O2 compared to control cells assessed either by the MTS cell proliferation assay (1% O2: 1.99 ± 0.04 270 

vs normoxia: 1.73 ± 0.24, absorbance [AU], p > 0.05), or by trypan blue exclusion (1% O2: 87 ± 1% 271 

vs normoxia: 89 ± 1%, p > 0.05) 272 

  273 
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3.3 Morphology of HECV and HECV-derived-EVs.  274 

Scanning electron microscopy confirmed the release of EVs from HECVs. Cells were homogenous 275 

and approximately 10-15 µm in diameter. Appendix Figure A4A shows HECVs incubated in 276 

normoxic (21% O2) conditions. Cells appear relatively dormant and have distinct cell boundaries. 277 

Appendix Figure A4B shows HECV cells incubated in hypoxic conditions (1% O2) for 24 hours. 278 

These cells appear rounded, producing a higher number of vesicles compared to the normoxic cells. 279 

Transmission electron microscopy confirmed the presence of EVs isolated from HECVs incubated in 280 

normoxia (Appendix Figure A4C) and hypoxia (Appendix Figure A4D). These EVs appear granular 281 

and approximately 100-250 nm in diameter.   282 

3.4 Characterisation of EVs 283 

Flow cytometry confirmed the presence of VCAM-1, ICAM-1, PECAM-1, P-selectin and E-selectin 284 

on HECVs which did not alter after hypoxia exposure (p > 0.05, Appendix Figure A5A). The 285 

presence of these adhesion molecules was reflected in the EVs. However these also did not change as 286 

a function of hypoxia exposure (p > 0.05, Appendix Figure A5B). There were no differences in the 287 

proportion of annexin V positive EVs between hypoxia-derived EVs (11 ± 0.2%) and normoxia-288 

derived EVs (11 ± 0.25%, p > 0.05).  289 

Time-resolved fluorescence revealed no difference between the level of the exosomal markers CD9, 290 

TSG101 or ALIX and the endothelial marker VE-Cadherin in EVs isolated from normoxia and 291 

hypoxia (CD9: 21% O2; 37651± 1724 vs 1% O2; 39528 ± 2507. TSG101: 21% O2; 14495 ± 549 vs 292 

1% O2; 15979 ± 1953. ALIX: 21% O2; 8683 ± 818 vs 1% O2; 10310 ± 510. CD144: 21% O2; 2182 ± 293 

178 vs 1% O2; 2601 ± 234, arbitrary units, p > 0.05) (Figure 2). HIF-1α was present in EVs isolated 294 

from hypoxic HECVs and absent in those isolated from normoxia (21% O2; 115 ± 25 vs 1% O2; 295 

10310 ± 520, p < 0.001) (Appendix Figure A6).  296 

3.5 Effect of silencing HIF-1α and HIF-2α 297 

To confirm the role of HIF-1α and/or HIF-2α in the hypoxic enhancement of EV release, HECVs 298 

were transfected with a siRNA targeting either HIF-1α, or HIF-2α. Cells transfected with HIF-1α 299 

siRNA failed to show an enhancement in EV release following hypoxia compared to cells transfected 300 

with control siRNA or cells exposed to hypoxia alone  (HIF-1α siRNA in 1% O2: 243 ± 20 EVs/cell, 301 

control siRNA in 1% O2: 1680 ± 473 EVs/cell, 1% O2:1680 ± 250 EVs/cell, p < 0.001) (Figure 4A). 302 

EV production in cells transfected with HIF-1α siRNA in hypoxia was similar to that of the normoxia 303 

control (158 ± 38 EVs/cell, p >0.05). HECVs were also transfected with HIF-2α siRNA. Unlike HIF-304 

1α siRNA transfection, HIF-2α silencing had no effect on EV production compared to cells 305 

transfected with control siRNA or exposed to hypoxia alone (HIF-2α siRNA in 1% O2: 1549 ± 46 306 

EVs/cell, control siRNA in 1% O2: 1608 ± 69 EVs/cell, 1% O2:1774 ± 132 EVs/cell, p < 0.05. 307 
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Western blotting confirmed that cells transfected with HIF-1α and HIF-2α siRNA successfully 308 

inhibited gene expression, whilst the control siRNA had no impact on HIF-1α/-2α expression (Figure 309 

4C, 4D).  310 

3.6 Effect of sodium nitrite on EV production 311 

To assess the effect of NO on the hypoxia-mediated enhancement of EV production, HECVs were 312 

treated with NaNO2. There was little evidence to suggest that NaNO2
 had any effect on EV production 313 

at 21% O2, (21% O2:132 ± 15 EVs/cell vs 21% O2 + NaNO2: 125 ± 19 EVs/cell, p >0.05). However, 314 

NaNO2 significantly reduced the hypoxic enhancement of EV production (1% O2: 1859 ± 67 EVs/cell 315 

vs. 1% O2 + NaNO2: 905 ± 78 EVs/cell, p <0.001). Treatment of HECVs in hypoxia with allopurinol 316 

in addition to NaNO2 attenuated the NaNO2-induced suppression of hypoxia-mediated EV release, 317 

(1% O2 + NaNO2; 905 ± 78 EVs/cell vs 1% O2, NaNO2 + Allopurinol; 1414 ± 141 EVs/cell, p 318 

<0.001). Allopurinol alone had no effect on EV production in hypoxia (1824 ± 69 EVs/cell, p > 0.05 319 

(Figure 4B). The NO donor S-Nitrosoglutathione (GSNO) also significantly reduced EV production in 320 

hypoxia (896 ± 27 EVs/cell, p < 0.001) (Figure 5A). Western blots confirmed that NaNO2 addition in 321 

hypoxia reduced the expression of HIF-1α. The addition of allopurinol in the presence of NaNO2 322 

appeared to restore HIF-1α expression in HECVs (Figure 5B).   323 

3.7 Effect of hypoxia and sodium nitrite on EV production in HUVECs 324 

In order to validate our findings in the HECV cell line, the effect of hypoxia and sodium nitrite on EV 325 

production was also assessed in HUVECs. NaNO2 had no effect on EV production in normoxia (21% 326 

O2: 43 ± 5.6 EVs/cell vs 21% O2 + NaNO2: 41 ± 4 EVs/cell, p > 0.05). Hypoxia greatly enhanced EV 327 

production compared to normoxia (1% O2: 291 ± 23 EVs/cell vs 21% O2: 43 ± 6 EVs/cell, p < 0.001). 328 

Furthermore, the addition of NaNO2 significantly reduced EV production in hypoxia (1% O2 + 329 

NaNO2: 153 ± 11 EVs/cell vs 1% O2: 291 ± 23 EVs/cell, p < 0.001) (Figure 6A). Western blots 330 

confirmed that NaNO2 addition in hypoxia reduced the expression of HIF-1α (Figure 6B). 331 
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4. Discussion 332 

Our study shows that hypoxia-induced enhancement in EV production is mediated by HIF-1α in 333 

endothelial cells. We extend these observations to show that NO2
- alleviates EV production selectively 334 

during hypoxia at least in part by reduction to NO via xanthine oxidoreductase, in turn favouring the 335 

oxygen sensitive degradation of HIF-1α and subsequent suppression of HIF-mediated EV release.  336 

During pathological conditions cellular O2 levels can often be insufficient to meet physiological 337 

demands. The resulting hypoxia is an important feature of cardiovascular disease, sleep apnoea, and 338 

cancer and is associated with poor patient outcomes [45]. Endothelial cells exposed to hypoxia for 24 339 

hours demonstrated enhanced EV production at 5% O2 and lower. This is in accordance with previous 340 

studies which have demonstrated that hypoxia is associated with increased endothelial-derived EV 341 

production in vivo [16,17]. Arterial blood pO2 is normally within the range 10-14% O2 (75-100 342 

mmHg), with venous levels approximately 4-5.5% O2 (30-40 mmHg). At an arterial O2 of 8% (60 343 

mmHg) there is a steep decline in oxygen saturation, and a human would require supplemental 344 

breathing, whereas <4% O2 (26 mmHg) can be considered extreme hypoxia [46]. Given these 345 

reference ranges, we rationalised 5% O2 in our studies represents an accurate model of a hypoxic 346 

condition for cells in culture, whereas less than 1% O2 reflects severe hypoxia.  347 

Endothelial EV signalling has been shown to enhance activation and adhesion of platelets, leading to 348 

the formation of a thrombus [47].  Studies have shown that increased EV release by activated 349 

endothelial cells was associated with cardiovascular events in patients with stroke history [48]. It 350 

remains unclear whether the pathological effects of these vesicles are due to differences in biological 351 

cargo compared to vesicles released under resting conditions, or simply due to an increased number of 352 

vesicles being produced. In our studies, we failed to measure a difference in numerous adhesion 353 

molecules between vesicles released from cells in hypoxia compared to cells in normoxia. 354 

Interestingly, we found HIF-1α was present in our EV sample, and was elevated under hypoxic 355 

conditions, potentially allowing for paracrine signalling to nearby cells. Previous studies have shown 356 

that nuclear translocation is not required for HIF-1α stabilization after its translation in the cytoplasm 357 

[49], and thus may be packaged into EV during their formation via the classical pathway of exosome 358 

formation. This pathway is governed by the endosomal sorting complex required for transport 359 

(ESCRT), which orchestrates the formation of intraluminal vesicles within multivesicular bodies 360 

following invagination of the cells plasma membrane [50]. Notably, we were unable to detect HIF-1α 361 

in EVs derived from HIF-1α siRNA treated cells.  362 

Consistent with previous reports in breast cancer cell lines [51] we provide evidence that HIF-1α is 363 

pivotal in the hypoxia-induced enhancement of EV release in endothelial cells. In contrast, HIF-2α 364 

had no influence on hypoxic EV production. Thus, hypoxia-mediated EV production may utilise 365 
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common cellular pathways regardless of the cell type. HIF-1α is thought to be involved in acute 366 

hypoxia (2-24 hours), with HIF-2α involved in cellular adaptation to chronic hypoxia (>24 hours) 367 

[52,53]. A third HIF isoform, HIF-3α, also regulates the cellular response to hypoxia but was not 368 

studied here. HIF-3α lacks the transactivation domain found in both HIF-1α and HIF-2α isoforms, and 369 

is said to be a negative regulator of HIF-1α and HIF-2α induced gene expression [54].  370 

Acute hypoxia has been shown to increase calcium to levels similar to those observed during agonist 371 

stimulation of endothelial cells, but too low to cause apoptosis or a reduction in viability [55]. The 372 

mechanism of EV release by cells is still not fully characterised, although it is known to be dependent 373 

on a rise in cytosolic calcium, and subsequent activation of calpain and protein kinases, allowing 374 

cytoskeletal remodelling, translocation of phosphotidylserine, and enhanced permeability to 375 

potassium with associated osmotic effects [56–60]. Indeed, HIF-1α activation has recently been 376 

shown to permit cytoskeleton reorganization in endothelial cells [61]. Furthermore, RAB22A has 377 

previously been identified as a potential mediator of HIF-1α induced EV release. RAB22A is a small 378 

GTPase involved in trafficking between endosomal compartments, which is localised to budding EVs 379 

[62]. A study by Wang et al showed expression of this GTPase was HIF-1α mediated, with RAB22A 380 

knockdown completely eliminating the increase in EV production in hypoxia [63].  381 

Moreover, HIF has previously been shown to induce autophagy, via upregulation of the BNIP-3 gene, 382 

promoting the BNIP-3/Beclin pathway [64]. Additionally, HIF-1α is an inhibitor of the mammalian 383 

target of rapamycin (mTOR), via upregulation of the target genes REDD1 and REDD2 [65]. mTOR is 384 

a key regulator of autophagy induction, with activated mTOR supressing autophagy, and negative 385 

regulation of mTOR promoting it [66]. Autophagy and exosome release are coordinated mechanisms 386 

that share common cellular machinery [67], with some studies showing that induction of autophagy 387 

enhances EV release [68]. Indeed, the p38 mitogen-activated protein kinase (MAPK) that is involved 388 

in autophagy has also been shown to enhance procoagulant endothelial EV release [56]. This pathway 389 

could therefore explain the increase in EV generation seen in this study.  390 

To our knowledge this is the first study to demonstrate that NO alleviates the hypoxic enhancement of 391 

EV production in endothelial cells, through the hypoxia-selective reduction of NO2
- to NO via 392 

xanthine oxidoreductase. This reduction was observed in both an endothelial cell line (HECVs) and 393 

primary endothelial cells (HUVECs). This observation is supported by previous work which showed 394 

impaired NO production induces endothelial EV production in vitro [32]. In contrast to the 395 

constitutively expressed β-subunit of HIF, HIF-1α is an oxygen-regulated subunit. Numerous factors 396 

have been shown to modulate HIF-1α activation and stabilisation in general, including NO [69]. NO2
- 397 

represents a bioactive “storage pool” for NO under certain conditions, such as hypoxia. This pathway, 398 

dubbed the “nitrate-nitrite-nitric oxide pathway”, has been said to complement the L-arginine-eNOS 399 
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pathway perfectly, ensuring NO production continues during conditions where oxygen-dependent 400 

eNOS activity is compromised. Indeed we, and others, have previously shown that NO2
- administered 401 

intravenously can protect against vascular reperfusion injury [70,71].  402 

The regulation of HIF-1α by NO in hypoxia involves the mitochondrial cytochrome c oxidase (CcO), 403 

which plays a central role in oxidative phosphorylation and ATP synthesis. NO can readily modulate 404 

the activity of CcO and therefore its O2 consumption. In hypoxia, competitive binding of NO inhibits 405 

CcO allowing the redistribution of intracellular O2, leading to increased O2 availability for prolyl 406 

hydroxylation and subsequent degradation of HIF-1α, which has been shown by numerous studies 407 

[30,31,69]. Collectively, our data suggest that although HIF-1 appears to be the master hypoxic 408 

regulator which governs hypoxia-induced EV release, under hypoxic conditions NO2
- is metabolised 409 

to NO, promoting the degradation of HIF-1α and subsequent suppression of EV release. Interestingly, 410 

HIF-1α can enhance NO production via upregulation of inducible nitric oxide synthase (iNOS), 411 

highlighting a potential negative feedback mechanism [72,73].  412 

Treatment of endothelial cells with allopurinol, in the presence of NaNO2, largely inhibited the NO2-413 

attributed suppression of EV production. This confirms that under hypoxic conditions, xanthine 414 

oxidoreductase plays an important role in the reduction of NO2
- to NO. However, the presence of 415 

allopurinol failed to completely restore EV production seen in hypoxia alone, and it is therefore likely 416 

that multiple mechanisms, including mitochondrial reduction and aldehyde dehydrogenase play a role 417 

in reducing NO2
- to NO in endothelial cells [74].  418 

In summary, this study suggests a novel means by which inorganic nitrite (NO2
-) alleviates the 419 

hypoxic enhancement in EV production. Future studies should further elucidate which downstream 420 

targets of HIF-1α may be responsible for the increase in EV production, and investigate whether 421 

enhancing NO bioavailability affects EV levels in clinical models of ischaemia.  422 
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Figures  640 

Figure 1.   The effect of hypoxia on EV concentration. (A) EVs produced per cell at varying O2 641 

concentrations. (B) Western blot showing the presence and absence of HIF-1α at varying O2 642 

concentrations. Lane 1: 21% O2. Lane 2: 1% O2. Lane 3: 2% O2. Lane 4: 5% O2. Lane 5: 10% O2. Lane 643 

6: 20% O2. Results represent [n = 5]. Each sample was analysed in quintuplicate and the mean was 644 

used in further analysis. Data are expressed as mean ± SEM. *** reflects p < 0.001.  645 

 646 

647 
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Figure 2. The effect of hypoxia on EV size distribution. Assessed in 50 nm bin sizes, results 648 

represent [n = 5]. Each sample was analysed in quintuplicate and the mean was used in further 649 

analysis. Data are expressed as mean ± SEM. *** reflects p< 0.001. 650 
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Figure 3. The effect of the hypoxia mimetic agent desferrioxamine on EV production. (A) EVs 652 

produced per cell. (B) Western blot confirming successful stabilisation of HIF-1α in normoxia. Lane 653 

1: 1% O2. Lane 2: 1% O2 + DFO. Lane 3: 21% O2. Lane 4: 21% O2 + DFO. Results represent [N=5]. 654 

Each sample was analysed in quintuplicate and the mean was used in further analysis. Data are 655 

expressed as mean ± SEM. *** and * reflect p< 0.001. 656 
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Figure 4. The effect of silencing HIF-1α and HIF-2α on EV production. (A) HIF-1α siRNA; EVs 658 

produced per cell. (B) HIF-2α siRNA; EVs produced per cell. (C) Western blot confirming successful 659 

silencing of HIF-1α. Lane 1: 21% O2. Lane 2: 1% O2. Lane 3: 1% O2, HIF-1α siRNA. Lane 4: 1% O2, 660 

control siRNA. (D) Western blot confirming successful silencing of HIF-2α. Lane 1: 21% O2. Lane 2: 661 

1% O2. Lane 3: 1% O2, HIF-2α siRNA. Lane 4: 1% O2, control siRNA. Results represent [n = 5]. Each 662 

sample was analysed in quintuplicate and the mean was used in further analysis. Data are expressed as 663 

mean ± SEM. *** reflects p < 0.001. 664 
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Figure 5. The effect of sodium nitrite on EV production. (A) EVs produced per cell following 666 

exposure to various conditions. (B) Western blotting showing the expression of HIF-1α under various 667 

conditions. Lane 1: 21% O2. Lane 2: 21% O2, NaNO2. Lane 3: 1% O2. Lane 4: 1% O2, NaNO2. Lane 5: 668 

1% O2, NaNO2 and allopurinol. Results represent [n = 5]. Each sample was analysed in quintuplicate 669 

and the mean was used in further analysis. Data are expressed as mean ± SEM. **, *** reflects p< 670 

0.01, and p< 0.001 respectively. 671 
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Figure 6. The effect of hypoxia and sodium nitrite on EV production in HUVECs. (A) EVs 
produced by HUVECs following exposure to hypoxia and/or NaNO2. (B) Western blotting showing 
the expression of HIF-1α following exposure to hypoxia and/or NaNO2. Lane 1: 1% O2. Lane 2: 1% 
O2 + NaNO2. Lane 3: 21% O2. Lane 4: 21% O2 + NaNO2. Results represent [n=5]. Each sample was 
analysed in quintuplicate and the mean was used in further analysis. Data are expressed as mean ± 
SEM. *** reflects p< 0.001. 

 




