30 research outputs found

    Bacteriophages in clinical samples can interfere with microbiological diagnostic tools

    Get PDF
    Bacteriophages are viruses that infect bacteria, and they are found everywhere their bacterial hosts are present, including the human body. To explore the presence of phages in clinical samples, we assessed 65 clinical samples (blood, ascitic fluid, urine, cerebrospinal fluid, and serum). Infectious tailed phages were detected in >45% of ascitic fluid and urine samples. Three examples of phage interference with bacterial isolation were observed. Phages prevented the confluent bacterial growth required for an antibiogram assay when the inoculum was taken from an agar plate containing lysis plaques, but not when taken from a single colony in a phage-free area. In addition, bacteria were isolated directly from ascitic fluid, but not after liquid enrichment culture of the same samples, since phage propagation lysed the bacteria. Lastly, Gram-negative bacilli observed in a urine sample did not grow on agar plates due to the high densities of infectious phages in the sample

    Bacteriophages in clinical samples can interfere with microbiological diagnostic tools

    Get PDF
    Bacteriophages are viruses that infect bacteria, and they are found everywhere their bacterial hosts are present, including the human body. To explore the presence of phages in clinical samples, we assessed 65 clinical samples (blood, ascitic fluid, urine, cerebrospinal fluid, and serum). Infectious tailed phages were detected in >45% of ascitic fluid and urine samples. Three examples of phage interference with bacterial isolation were observed. Phages prevented the confluent bacterial growth required for an antibiogram assay when the inoculum was taken from an agar plate containing lysis plaques, but not when taken from a single colony in a phage-free area. In addition, bacteria were isolated directly from ascitic fluid, but not after liquid enrichment culture of the same samples, since phage propagation lysed the bacteria. Lastly, Gram-negative bacilli observed in a urine sample did not grow on agar plates due to the high densities of infectious phages in the sampl

    Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces

    Get PDF
    Bacteriophages can package part of their host's genetic material, including antibiotic resistance genes (ARGs), contributing to a rapid dissemination of resistances among bacteria. Phage particles containing ARGs were evaluated in meat, pork, beef and chicken minced meat, and ham and mortadella, purchased in local retailer. Ten ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaOXA-48, blaVIM, qnrA, qnrS, mecA, armA and sul1) were analyzed by qPCR in the phage DNA fraction. The genes were quantified, before and after propagation experiments in Escherichia coli, to evaluate the ability of ARG-carrying phage particles to infect and propagate in a bacterial host. According to microbiological parameters, all samples were acceptable for consumption. ARGs were detected in most of the samples after particle propagation indicating that at least part of the isolated phage particles were infectious, being sul1the most abundant ARG in all the matrices followed by β-lactamase genes. ARGs were also found in the phage DNA fraction of thirty-seven archive chicken cecal samples, confirming chicken fecal microbiota as an important ARG reservoir and the plausible origin of the particles found in meat. Phages are vehicles for gene transmission in meat that should not be underestimated as a risk factor in the global crisis of antibiotic resistance.info:eu-repo/semantics/publishedVersio

    Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces

    Get PDF
    This work was supported by the Spanish Ministerio de Innovación y Ciencia (AGL2016-75536-P), the Agencia Estatal de Investigación (AEI) and the European regional fund (ERF), the Generalitat de Catalunya (2017SGR170) and the Centre de Referència en Biotecnologia (XeRBa). CERCA Programme from the Generalitat de Catalunya is also acknowledged. M.B.-J. has a grant from COLCIENCIAS (Republic of Colombia). P.B.-P. has a grant from the Spanish Ministry of Economy, Industry and Competitiveness (BES-2017-081296). L.R.-R. is supported by the Beatriu de Pinos postdoctoral programme of the Government of Catalonia's Secretariat for Universities and Research of the Ministry of Economy and Knowledge.Bacteriophages can package part of their host's genetic material, including antibiotic resistance genes (ARGs), contributing to a rapid dissemination of resistances among bacteria. Phage particles containing ARGs were evaluated in meat, pork, beef and chicken minced meat, and ham and mortadella, purchased in local retailer. Ten ARGs (bla, bla, bla, bla, bla, qnrA, qnrS, mecA, armA and sul1) were analyzed by qPCR in the phage DNA fraction. The genes were quantified, before and after propagation experiments in Escherichia coli, to evaluate the ability of ARG-carrying phage particles to infect and propagate in a bacterial host. According to microbiological parameters, all samples were acceptable for consumption. ARGs were detected in most of the samples after particle propagation indicating that at least part of the isolated phage particles were infectious, being sul1the most abundant ARG in all the matrices followed by β-lactamase genes. ARGs were also found in the phage DNA fraction of thirty-seven archive chicken cecal samples, confirming chicken fecal microbiota as an important ARG reservoir and the plausible origin of the particles found in meat. Phages are vehicles for gene transmission in meat that should not be underestimated as a risk factor in the global crisis of antibiotic resistance

    Carbapenemase-Producing Enterobacteriaceae Recovered from a Spanish River Ecosystem

    Get PDF
    The increasing resistance to carbapenems is an alarming threat in the fight against multiresistant bacteria. The dissemination properties of antimicrobial resistance genes are supported by their detection in a diverse population of bacteria, including strains isolated from the environment. The objective of this study was to investigate the presence of carbapenemase-producing Enterobacteriaceae (CPE) collected from a river ecosystem in the Barcelona metropolitan area (Spain). Identification of β-lactamases and other resistance determinants was determined as was the antimicrobial susceptibility profile. Moreover, screening of virulence factors, plasmid addiction systems, plasmid partition systems and replicon typing was performed. The results identified 8 isolates belonging to different species (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica). The most prevalent enzyme was KPC-2 (n = 6), followed by VIM-1 (n = 2) and IMI-2 (n = 1), whereas no OXA-48-type was detected. In addition, one strain was positive for both KPC-2 and VIM-1 enzymes. All the carbapenemase-encoding plasmids carried at least one plasmid addiction or partition system, being vagCD and parAB the most frequently detected, respectively. E. coli and K. pneumoniae isolates carried a low number of virulence-associated factors and none of the detected clones has previously been identified in the clinical setting. These findings support the high dissemination potential of the carbapanemase-encoding genes and reinforce the idea that the environment is another reservoir that may play an important role in the capture, selection and dissemination of carbapenem resistance genes

    Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas 7, 8, and 9

    Get PDF
    The increasing resistance to carbapenems is an alarming threat in the fight against multiresistant bacteria. The dissemination properties of antimicrobial resistance genes are supported by their detection in a diverse population of bacteria, including strains isolated from the environment. The objective of this study was to investigate the presence of carbapenemase-producing Enterobacteriaceae (CPE) collected from a river ecosystem in the Barcelona metropolitan area (Spain). Identification of β-lactamases and other resistance determinants was determined as was the antimicrobial susceptibility profile. Moreover, screening of virulence factors, plasmid addiction systems, plasmid partition systems and replicon typing was performed. The results identified 8 isolates belonging to different species (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica). The most prevalent enzyme was KPC-2 (n = 6), followed by VIM-1 (n = 2) and IMI-2 (n = 1), whereas no OXA-48-type was detected. In addition, one strain was positive for both KPC-2 and VIM-1 enzymes. All the carbapenemase-encoding plasmids carried at least one plasmid addiction or partition system, being vagCD and parAB the most frequently detected, respectively. E. coli and K. pneumoniae isolates carried a low number of virulence-associated factors and none of the detected clones has previously been identified in the clinical setting. These findings support the high dissemination potential of the carbapanemase-encoding genes and reinforce the idea that the environment is another reservoir that may play an important role in the capture, selection and dissemination of carbapenem resistance genes

    Antibiotic resistance genes in phage particles isolated from human feces and induced from clinical bacterial isolates

    Get PDF
    Phage particles have emerged as elements with the potential to mobilize antibiotic resistance genes (ARGs) in different environments, including the intestinal habitat. The aim of this study was to determine the occurrence of ARGs in phage particles present in fecal matter and induced from strains isolated from feces. Nine ARGs (blaTEM, blaCTX-M-1-group, blaCTX-M-9-group, blaOXA-48, qnrA, qnrS, mecA, sul1 and armA) were quantified by qPCR in the phage DNA fractions of 150 fecal samples obtained from healthy individuals. These subjects had not received antibiotic treatment or travelled abroad in the three months prior to the sample collection. On the suspicion that the detected particles originated from bacterial flora, 82 Escherichia coli and Klebsiella pneumoniae isolates possessing at least one identified ARG (blaTEM, blaCTX-M-1-group, blaCTX-M-9-group, armA, qnrA, qnrS, and sul1) were isolated and their capacity to produce phage particles carrying these ARGs after induction was evaluated. Seventy-two percent of samples were positive for at least one ARG, with blaTEM and blaCTX-M-9-group being the most prevalent and abundant. Fifty-one isolates (62%) showed an increase in the number of copies of the respective ARG in the phage fraction after induction, with blaTEM, blaCTX-M-1-group, blaCTX-M-9-group and sul1 being the most abundant. Phages induced from the isolates were further purified and visualized using microscopy and their DNA showed ARG levels of up to 10(10) gene copies/ml. This study highlights the abundance of phage particles harboring ARGs and indicates that bacterial strains in the intestinal habitat could be sources of these particles

    Detection of Bacteriophage Particles Containing Antibiotic Resistance Genes in the Sputum of Cystic Fibrosis Patients

    Get PDF
    Cystic fibrosis (CF) is a chronic disease in which the bacterial colonization of the lung is linked to an excessive inflammatory response that leads to respiratory failure. The microbiology of CF is complex. Staphylococcus aureus is the first bacterium to colonize the lungs in 30% of pediatric CF patients, and 80% of adult patients develop a chronic Pseudomonas aeruginosa infection, but other microorganisms can also be found. The use of antibiotics is essential to treat the disease, but antibiotic performance is compromised by resistance mechanisms. Among various mechanisms of transfer of antibiotic resistance genes (ARGs), the recently been reported bacteriophages are the least explored in clinical settings. To determine the role of phages in CF as mobile genetic elements (MGEs) carrying ARGs, we evaluated their presence in 71 CF patients. 71 sputum samples taken from these patients were screened for eight ARGs (bla , bla -group, bla -group, bla , bla , mecA, qnrA, and qnrS) in the bacteriophage DNA fraction. The phages found were also purified and observed by electron microscopy. 32.4% of CF patients harbored ARGs in phage DNA. β-lactamase genes, particularly bla and bla , were the most prevalent and abundant, whereas mecA, qnrA, and qnrS were very rare. Siphoviridae phage particles capable of infecting P. aeruginosa and Klebsiella pneumoniae were detected in CF sputum. Phage particles harboring ARGs were found to be abundant in the lungs of both CF patients and healthy individuals and could contribute to the colonization of multiresistant strains

    Detection of bacteriophage particles containing antibiotic resistance genes in the sputum of cystic fibrosis patients

    Get PDF
    Cystic fibrosis (CF) is a chronic disease in which the bacterial colonization of the lung is linked to an excessive inflammatory response that leads to respiratory failure. The microbiology of CF is complex. Staphylococcus aureus is the first bacterium to colonize the lungs in 30% of pediatric CF patients, and 80% of adult patients develop a chronic Pseudomonas aeruginosa infection, but other microorganisms can also be found. The use of antibiotics is essential to treat the disease, but antibiotic performance is compromised by resistance mechanisms. Among various mechanisms of transfer of antibiotic resistance genes (ARGs), the recently been reported bacteriophages are the least explored in clinical settings. To determine the role of phages in CF as mobile genetic elements (MGEs) carrying ARGs, we evaluated their presence in 71 CF patients. 71 sputum samples taken from these patients were screened for eight ARGs (blaTEM, blaCTX-M-1-group, blaCTX-M-9-group, blaOXA-48, blaVIM, mecA, qnrA, and qnrS) in the bacteriophage DNA fraction. The phages found were also purified and observed by electron microscopy. 32.4% of CF patients harbored ARGs in phage DNA. β-lactamase genes, particularly blaVIM and blaTEM, were the most prevalent and abundant, whereas mecA, qnrA, and qnrS were very rare. Siphoviridae phage particles capable of infecting P. aeruginosa and Klebsiella pneumoniae were detected in CF sputum. Phage particles harboring ARGs were found to be abundant in the lungs of both CF patients and healthy individuals and could contribute to the colonization of multiresistant strains

    Twitter as a Tool for Teaching and Communicating Microbiology: The #microMOOCSEM Initiative

    Get PDF
    Online social networks are increasingly used by the population on a daily basis. They are considered a powerful tool for science communication and their potential as educational tools is emerging. However, their usefulness in academic practice is still a matter of debate. Here, we present the results of our pioneering experience teaching a full Basic Microbiology course via Twitter (#microMOOCSEM), consisting of 28 lessons of 40-45 minutes duration each, at a tweet per minute rate during 10 weeks. Lessons were prepared by 30 different lecturers, covering most basic areas in Microbiology and some monographic topics of general interest (malaria, HIV, tuberculosis, etc.). Data analysis on the impact and acceptance of the course were largely affirmative, promoting a 330% enhancement in the followers and a >350-fold increase of the number of visits per month to the Twitter account of the host institution, the Spanish Society for Microbiology. Almost one third of the course followers were located overseas. Our study indicates that Massive Online Open Courses (MOOC) via Twitter are highly dynamic, interactive, and accessible to great audiences, providing a valuable tool for social learning and communicating science. This strategy attracts the interest of students towards particular topics in the field, efficiently complementing customary academic activities, especially in multidisciplinary areas like Microbiology.Versión del edito
    corecore