445 research outputs found

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Radio Science Investigation on a Mercury Orbiter Mission

    Get PDF
    We review the results from {\it Mariner 10} regarding Mercury's gravity field and the results from radar ranging regarding topography. We discuss the implications of improving these results, including a determination of the polar component, as well as the opportunity to perform relativistic gravity tests with a future {\it Mercury Orbiter}. With a spacecraft placed in orbit with periherm at 400 km altitude, apherm at 16,800 km, period 13.45 hr and latitude of periherm at +30 deg, one can expect a significant improvement in our knowledge of Mercury's gravity field and geophysical properties. The 2000 Plus mission that evolved during the European Space Agency (ESA) {\it Mercury Orbiter} assessment study can provide a global gravity field complete through the 25th degree and order in spherical harmonics. If after completion of the main mission, the periherm could be lowered to 200 km altitude, the gravity field could be extended to 50th degree and order. We discuss the possibility that a search for a Hermean ionosphere could be performed during the mission phases featuring Earth occultations. Because of its relatively large eccentricity and close proximity to the Sun, Mercury's orbital motion provides one of the best solar-system tests of general relativity. Consequently, we emphasize the number of feasible relativistic gravity tests that can be performed within the context of the parameterized post-Newtonian formalism - a useful framework for testing modern gravitational theories. We pointed out that current results on relativistic precession of Mercury's perihelion are uncertain by 0.5 %, and we discuss the expected improvement using {\it Mercury Orbiter}. We discuss the importance of {\it Mercury Orbiter} for setting limits on a possible time variation in theComment: 23 pages, LaTeX, no figure

    INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells

    Get PDF
    T cell antigen receptor-proximal signaling components, Rho-family GTPases, and formin proteins DIA1 and FMNL1 have been implicated in centrosome reorientation to the immunological synapse of T lymphocytes. However, the role of these molecules in the reorientation process is not yet defined. Here we find that a subset of microtubules became rapidly stabilized and that their α-tubulin subunit posttranslationally detyrosinated after engagement of the T cell receptor. Formation of stabilized, detyrosinated microtubules required the formin INF2, which was also found to be essential for centrosome reorientation, but it occurred independently of T cell receptor-induced massive tyrosine phosphorylation. The FH2 domain, which was mapped as the INF2 region involved in centrosome repositioning, was able to mediate the formation of stable, detyrosinated microtubules and to restore centrosome translocation in DIA1-, FMNL1-, Rac1-, and Cdc42-deficient cells. Further experiments indicated that microtubule stabilization was required for centrosome polarization. Our work identifies INF2 and stable, detyrosinated microtubules as central players in centrosome reorientation in T cellsThis work was supported by grants BFU2009-07886 and CONSOLIDER COAT CSD2009-00016 to M.A. Alonso, and BFU2011-22859 to I. Correas (all of them from the Ministerio de Economía y Competitividad, Spain), and grant S2010/BMD-2305 from the Comunidad de Madrid to I. Correa

    An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

    Get PDF
    Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40–400 µM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (∼10-fold) in the narrow Met interval from 50 to 100 µM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake

    Beyond the therapeutic: a Habermasian view of self-help groups’ place in the public sphere

    Get PDF
    Self-help groups in the United Kingdom continue to grow in number and address virtually every conceivable health condition, but they remain the subject of very little theoretical analysis. The literature to date has predominantly focused on their therapeutic effects on individual members. And yet they are widely presumed to fulfil a broader civic role and to encourage democratic citizenship. The article uses Habermas’ model of the public sphere as an analytical tool with which to reconsider the literature on self-help groups in order to increase our knowledge of their civic functions. In doing this it also aims to illustrate the continuing relevance of Habermas’ work to our understanding of issues in health and social care. We consider, within the context of current health policies and practices, the extent to which self-help groups with a range of different forms and functions operate according to the principles of communicative rationality that Habermas deemed key to democratic legitimacy. We conclude that self-help groups’ civic role is more complex than is usually presumed and that various factors including groups’ leadership, organisational structure and links with public agencies can affect their efficacy within the public sphere

    Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    Get PDF
    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season
    corecore