210 research outputs found

    From Source to Sink: Petrogenesis of Cretaceous Anatectic Granites from the Fosdick Migmatite-Granite Complex, West Antarctica

    Get PDF
    This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of Petrology following peer review. The version of record Brown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., & Siddoway, C. S. (2016). From Source to Sink: Petrogenesis of Cretaceous Anatectic Granites from the Fosdick Migmatite–Granite Complex, West Antarctica. Journal of Petrology, 57(7), 1241–1278 is available online at: https://doi.org/10.1093/petrology/egw039Anatectic granites from the Fosdick migmatite-granite complex yield U-Pb zircon crystallization ages that range from 115 to 100Ma, with a dominant grouping at 107-100 Ma, which corresponds to the timing of dome formation during the regional oblique extension that facilitated exhumation of the complex. The occurrence of leucosome-bearing normal-sense shear zones inmigmatitic gneisses indicates that suprasolidus conditions in the crust continued into the early stages of doming and exhumation of the complex. The structure allows access to variably oriented granites in networks of dykes at deeper structural levels and subhorizontal sheeted granites at shallower structural levels within the complex. This feature allows an evaluation of the mechanisms that modify the composition of granite melts in their source and of granite magmas during their ascent and emplacement using whole-rock major, trace element and Sr and Nd isotope compositions, zircon Hf and O isotope compositions, and phase equilibria modelling of potential source rocks. Geochemical variability within the granites is attributed to source heterogeneity and blending of melts, which themselves are consistent with derivation from regional metasedimentary and metaplutonic source materials. The granites typically contain coarse blocky K-feldspar and/or plagioclase grains within interstitial quartz, and have low Rb/Sr ratios and large positive Eu anomalies. These features are inconsistent with the composition of primary crustal melts derived from metasedimentary and metaplutonic source materials, but consistent with early fractional crystallization of feldspar and subsequent drainage of the fractionated melt. Processes such as peritectic mineral entrainment and accessory mineral dissolution, entrainment and crystallization did not have any significant influence on the major and trace element composition of the granites. The granites in the networks of dykes are interpreted to represent choking of magma transport channels through the middle crust as the rate of magma flow declined during doming and exhumation, whereas the sheeted granites record collapse of subhorizontal, partially crystallized layers of magma by filter pressing and melt exfiltration during vertical shortening associated with doming and exhumation. These processes separated feldspar-rich residues from evolved melt. Based on the results of this study, caution is urged in estimating melt proportion from the volume of granite retained in migmatitic gneiss domes, as the granites may not represent liquid compositions.US National Science Foundation [ANT0944615, OPP-0338279, OPP-0944600, EAR1032156]NISPLab at the University of MarylandGeological Society of AmericaNational Science and Engineering Research Council of Canad

    Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence <it>in situ </it>hybridization (FISH).</p> <p>Results</p> <p>Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23.</p> <p>Conclusions</p> <p>Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future.</p

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    A ground-based near-infrared emission spectrum of the exoplanet HD 189733b

    Full text link
    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H2O), methane (CH4), carbon dioxide (CO2), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4 - 5.2 micron spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 micron and 3.1-4.1 micron, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at ~3.25 micron is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10-6 bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH4, similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.Comment: 12 pages, 2 figures, published in Natur

    Cell-type specific distribution and activation of type I IFN pathway molecules at the placental maternal-fetal interface in response to COVID-19 infection

    Get PDF
    Background and objectiveCOVID-19 infection in pregnancy significantly increases risks of adverse pregnancy outcomes. However, little is known how the innate immunity at the placental maternal-fetal interface responds to COVID-19 infection. Type I IFN cytokines are recognized as a key component of the innate immune response against viral infection. In this study, we specifically evaluated expression of IFN antiviral signaling molecules in placentas from women infected with COVID-19 during pregnancy.MethodsExpression of IFN activation signaling pathway molecules, including cyclic GMP–AMP synthase (cGAS), stimulator of interferon genes (STING), interferon regulatory factor 3 (IRF3), Toll-like receptor 7 (TLR7), mitochondrial antiviral-signaling protein (MAVS), and IFNÎČ were determined in formalin-fixed paraffin embedded (FFPE) placental tissue sections (villous and fetal membrane) by immunostaining. A total of 20 placentas were examined, 12 from COVID-19 patients and 8 from non-COVID-19 controls. Patient demographics, clinical data, and placental pathology report were acquired via EPIC medical record review.ResultsExcept BMI and placental weight, there was no statistical difference between COVID and non-COVID groups in maternal age, gestational age at delivery, gravity/parity, delivery mode, and newborn gender and weight. In COVID-exposed group, the main pathological characteristics in the placental disc are maternal and fetal vascular malperfusion and chronic inflammation. Compared to non-COVID controls, expression of IFN activation pathway molecules were all upregulated with distinct cell-type specific distribution in COVID-exposed placentas: STING in villous and decidual stromal cells; IRF3 in cytotrophoblasts (CTs) and extra-villous trophoblasts (EVTs); and TLR7 and MAVS in syncytiotrophoblasts (STs), CTs, and EVTs. Upregulation of STING, MAVS and TLR7 was also seen in fetal endothelial cells.ConclusionsSTING, IRF3, TLR7, and MAVS are key viral sensing molecules that regulate type I IFN production. Type I IFNs are potent antiviral cytokines to impair and eradicate viral replication in infected cells. The finding of cell-type specific distribution and activation of these innate antiviral molecules at the placental maternal-fetal interface provide plausible evidence that type I IFN pathway molecules may play critical roles against SARS-CoV-2 infection in the placenta. Our findings also suggest that placental maternal-fetal interface has a well-defined antiviral defense system to protect the developing fetus from SARS-CoV-2 infection

    Staying InformED: Top emergency Medicine pharmacotherapy articles of 2020

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The year 2020 was not easy for Emergency Medicine (EM) clinicians with the burden of tackling a pandemic. A large focus, rightfully so, was placed on the evolving diagnosis and management of patients with COVID-19 and, as such, the ability of clinicians to remain up to date on key EM pharmacotherapy literature may have been compromised. This article reviews the most important EM pharmacotherapy publications indexed in 2020. A modified Delphi approach was utilized for selected journals to identify the most impactful EM pharmacotherapy studies. A total of fifteen articles, eleven trials and four meta-analyses, were identified. This review provides a summary of each study, along with a commentary on the impact to the EM literature and EM clinician

    An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0

    Get PDF
    Radiocarbon is a critical constraint on our estimates of the timescales of soil carbon cycling that can aid in identifying mechanisms of carbon stabilization and destabilization and improve the forecast of soil carbon response to management or environmental change. Despite the wealth of soil radiocarbon data that have been reported over the past 75 years, the ability to apply these data to global-scale questions is limited by our capacity to synthesize and compare measurements generated using a variety of methods. Here, we present the International Soil Radiocarbon Database (ISRaD; http://soilradiocarbon.org, last access: 16 December 2019), an open-source archive of soil data that include reported measurements from bulk soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil profile. The core of ISRaD is a relational database structured around individual datasets (entries) and organized hierarchically to report soil radiocarbon data, measured at different physical and temporal scales as well as other soil or environmental properties that may also be measured and may assist with interpretation and context. Anyone may contribute their own data to the database by entering it into the ISRaD template and subjecting it to quality assurance protocols. ISRaD can be accessed through (1) a web-based interface, (2) an R package (ISRaD), or (3) direct access to code and data through the GitHub repository, which hosts both code and data. The design of ISRaD allows for participants to become directly involved in the management, design, and application of ISRaD data. The synthesized dataset is available in two forms: the original data as reported by the authors of the datasets and an enhanced dataset that includes ancillary geospatial data calculated within the ISRaD framework. ISRaD also provides data management tools in the ISRaD-R package that provide a starting point for data analysis; as an open-source project, the broader soil community is invited and encouraged to add data, tools, and ideas for improvement. As a whole, ISRaD provides resources to aid our evaluation of soil dynamics across a range of spatial and temporal scales. The ISRaD v1.0 dataset is archived and freely available at https://doi.org/10.5281/zenodo.2613911 (Lawrence et al., 2019).Max Planck Institute for Biogeochemistry; European Research CouncilEuropean Research Council (ERC) [695101]; USGS Land Change Science mission area; US Department of AgricultureUnited States Department of Agriculture (USDA) [2018-67003-27935]; US Geological Survey Powell Center for the working group on Soil Carbon Storage and FeedbacksOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space

    Get PDF
    Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (−)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening

    Genome-wide Association Study of Platelet Count Identifies Ancestry-Specific Loci in Hispanic/Latino Americans

    Get PDF
    Platelets play an essential role in hemostasis and thrombosis. We performed a genome-wide association study of platelet count in 12,491 participants of the Hispanic Community Health Study/Study of Latinos by using a mixed-model method that accounts for admixture and family relationships. We discovered and replicated associations with five genes (ACTN1, ETV7, GABBR1-MOG, MEF2C, and ZBTB9-BAK1). Our strongest association was with Amerindian-specific variant rs117672662 (p value = 1.16 × 10−28) in ACTN1, a gene implicated in congenital macrothrombocytopenia. rs117672662 exhibited allelic differences in transcriptional activity and protein binding in hematopoietic cells. Our results underscore the value of diverse populations to extend insights into the allelic architecture of complex traits

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore