235 research outputs found

    Historical Injustice, Agency, and Resentment

    Get PDF
    In societies marked by deep and enduring structural inequality – often along lines of caste, race, gender, or other forms of identity – how is responsibility for such injustice assigned? How is the agency necessary to overcome historical injustice imagined? These lectures will use Bhimrao Ramji Ambedkar’s writings as a starting point to explore the moral psychology of responding to historical injustice

    Precipitation Modeling over the Greenland and Antarctic Ice Sheets and the Relationship to the Surface Mass Balance and Climate

    Get PDF
    Atmospheric numerical simulation and dynamic retrieval method with atmospheric numerical analyses are used to assess the spatial and temporal variability of Antarctic precipitation for the last two decades. First, the Polar MM5 has been run over Antarctica to study the Antarctic precipitation. With a horizontal resolution of 60km, the Polar MM5 has been run for the period of July 1996 through June 1999 in a series of short-term forecasts from initial and boundary conditions provided by the ECMWF operational analyses. In comparison with climatological maps, the major features of the spatial distribution of Antarctic precipitation are well captured by the Polar MM5. Drift snow effects on redistribution of surface accumulation over Antarctica are also assessed with surface wind fields from Polar MM5 in this study. There are complex divergence and convergence patterns of drift snow transport over Antarctica, especially along the coast. It is found that areas with large drift snow transport convergence and divergence are located around escarpment areas where there is large katabatic wind acceleration. In addition, areas with large snow transport divergence are generally accompanied by areas with large snow transport convergence nearby, indicating that drift snow transport is of local importance for the redistribution of the snowfal

    Large‐scale hydro‐climatology of the terrestrial Arctic drainage system

    Get PDF
    The large‐scale hydro‐climatology of the terrestrial Arctic drainage system is examined, focusing on the period 1960 onward. Special attention is paid to the Ob, Yenisey, Lena, and Mackenzie watersheds, which provide the bulk of freshwater discharge to the Arctic Ocean. Station data are used to compile monthly gridded time series of gauge‐corrected precipitation (P). Gridded time series of precipitation minus evapotranspiration (P−ET) are calculated from the moisture flux convergence using NCEP reanalysis data. Estimates of ET are obtained as a residual. Runoff (R) is obtained from available discharge records. For long‐term water‐year means, P−ET for the Yenisey, Lena, and Mackenzie watersheds is 16–20% lower than the observed runoff. In the Ob watershed, the two values agree within 9%. Given the uncertainties in P−ET, we consider the atmospheric and surface water budgets to be reasonably closed. Compared to the other three basins, the mean runoff ratio (R/P) is lower in the Ob watershed, consistent with the high fraction of annual precipitation lost through ET. All basins exhibit summer maxima in P and minima in P−ET. Summer P−ET in the Ob watershed is negative due to high ET rates. For large domains in northern Eurasia, about 25% of July precipitation is associated with the recycling of water vapor evapotranspirated within each domain. This points to a significant effect of the land surface on the hydrologic regime. Variability in P and P−ET has generally clear associations with the regional atmospheric circulation. A strong link with the Urals trough is documented for the Ob. Relationships with indices of the Arctic Oscillation and other teleconnections are generally weak. Water‐year time series of runoff and P−ET are strongly correlated in the Lena watershed only, reflecting extensive permafrost. Cold‐season runoff has increased in the Yenisey and Lena watersheds. This is most pronounced in the Yenisey watershed, where runoff has also increased sharply in spring, decreased in summer, but has increased for the year as a whole. The mechanisms for these changes are not entirely clear. While they fundamentally relate to higher air temperatures, increased winter precipitation, and strong summer drying, we speculate links with changes in active layer thickness and thawing permafrost

    Modeled Antarctic Precipitation. Part I: Spatial and Temporal Variability*

    Get PDF
    Surface snow accumulation is the primary mass input to the Antarctic ice sheets. As the dominant term among various components of surface snow accumulation (precipitation, sublimation/deposition, and snow drift), pre-cipitation is of particular importance in helping to assess the mass balance of the Antarctic ice sheets and their contribution to global sea level change. The Polar MM5, a mesoscale atmospheric model based on the fifth-generation Pennsylvania State University– NCAR Mesoscale Model, has been run for the period of July 1996 through June 1999 to evaluate the spatial and temporal variability of Antarctic precipitation. Drift snow effects on the redistribution of surface snow over Antarctica are also assessed with surface wind fields from Polar MM5 in this study. It is found that areas with large drift snow transport convergence and divergence are located around escarpment areas where there is considerable katabatic wind acceleration. It is also found that the drift snow transport generally diverges over most areas of East and West Antarctica with relatively small values. The use of the dynamic retrieval method (DRM) to calculate precipitation has been developed and verified for the Greenland ice sheet. The DRM is also applied to retrieve the precipitation over Antarctica from 1979 to 1999 in this study. Most major features in the spatial distribution of Antarctic accumulation are well capture

    Extreme Warming in the Kara Sea and Barents Sea during the Winter Period 2000–16

    Get PDF
    The regional climate model COSMOin Climate Limited-AreaMode (COSMO-CLM or CCLM) is used with a high resolution of 15km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 208C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice.Also, the 30-km version of theArctic SystemReanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 18C for the ocean and sea ice area. Thus,ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.58Cyr21 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 708N; for CCLM the warming amounts to an average of almost 58C for 2002/03–2011/12

    Collaborative Research: Did the Laurentine Ice Sheet Control Abrupt Climate Change?

    Get PDF
    This is a collaborative project with the University of Maine and Ohio State University. The Principal Investigators will model the late glacial Laurentide Ice Sheet from near steady-state equilibrium at - 25,000 BP (years before present), through reversible stadial/interstadial transitions associated with Laurentide iceberg outbursts (Heinrich events 2 and 1), and across the threshold of irreversible Laurentide collapse after the last iceberg outburst at - 1 1,000 BP (Heinrich event 0). The goals are to determine if ice-sheet changes could have triggered climate changes by abrupt ice sheet change and to investigate the structure of these changes. The Principal Investigators will isolate mechanisms of abrupt change over hundreds of years in the ice sheet that are large enough to trigger climate changes captured as time snapshots by coupled global and regional atmospheric climate models. Specific modeling tasks are: 1) to provide the climate settings surrounding the Laurentide Ice Sheet at snapshots of time during this late glacial period. This includes the wind field over the ice sheet, proglacial lakes along the border, the fine-resolution mesoscale climate of North America, and global climate; 2) to provide the basal boundary conditions that, together with the internal flow and temperature fields, are used to calculate the basal mass balance. This includes the pattern of basal temperatures, melting and freezing rates, and the associated subglacial hydrology; 3) to model the Laurentide Ice Sheet basal thermal, hydrological, and mechanical conditions within the imposed and basal boundary constraints for the chosen timeframe; and 4) to determine whether modeling will isolate mechanisms of abrupt change that allow rapid advance and retreat of Laurentide ice, with areal, elevation, and volume changes large enough to trigger climate changes that are captured by our snapshots of regional and global climate.This project has significance for educational outreach and the possible behavior of present-day ice sheets. The education outreach program will be interactive with high school students. They will be able to manipulate the major variables so that they can view three-dimensional computer simulations of how the Laurentide Ice Sheet responds to each variable. This program will be disseminated on the world-wide web. If fluctuations in the Laurentide Ice Sheet triggered climate changes, then the possibility exists that present-day ice sheets covering Greenland and Antarctica could trigger similar climate changes, with major social, economic, and political consequences. A way to assess this possibility is to understand the internal instability mechanisms that could have caused abrupt changes in Laurentide ice extent, and to tie them firmly to known late glacial climate changes
    • 

    corecore