302 research outputs found

    STIS Echelle Observations of the Seyfert Galaxy NGC 4151: Physical Conditions in the Ultraviolet Absorbers

    Get PDF
    We have examined the physical conditions in intrinsic UV-absorbing gas in the Seyfert galaxy NGC 4151, using echelle spectra obtained with the Space Telescope Imaging Spectrograph (STIS). We confirm the presence of the kinematic components detected in earlier GHRS observations as well as a new broad absorption feature at a radial velocity of -1680 km/s. The UV continuum of NGC 4151 decreased by a factor of 4 over the previous two years, and we argue the changes in the column density of the low ionization absorption lines associated with the broad component at -490 km/s reflect the decrease in the ionizing flux. Most of the strong absorption lines (e.g., N V, C IV, Si IV) from this component are saturated, but show substantial residual flux in their cores, indicating that the absorber does not fully cover the source of emission. Our interpretation is that the unocculted light is due to scattering by free electrons from an extended region, which reflects continuum, emission lines, and absorption lines. We have been able to constrain the densities for the kinematic components based on absorption lines from metastable states of C III and Fe II, and/or the ratios of ground and fine structure lines of O I,C II, and Si II. We have generated a set of photoionization models which match the ionic column densities for each component during the present low flux state and those seen in previous high flux states with the GHRS and STIS, confirming that the absorbers are photoionized and respond to the changes in the continuum flux. We have been able to map the relative radial positions of the absorbers, and find that the gas decreases in density with distance. None of the UV absorbers is of sufficiently large column density or high enough ionization state to account for the X-ray absorption.Comment: 46 pages (Latex), 14 figures (postscript), plus a landscape table (Latex), to appear in the Astrophysical Journa

    Complex X-ray Absorption and the Fe Kalpha Profile in NGC 3516

    Full text link
    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and Nov. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of ~1100 km/s has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (~2.5 x 10E23 cm^-2) of highly ionized gas with a covering fraction ~50%. This low covering fraction suggests that the absorber lies within a few lt-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the Nov dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.Comment: 33 pages, 9 figures, accepted for publication in Ap

    Variable UV Absorption in the Seyfert 1.5 Galaxy NGC 3516: The Case for Associated UV and X-ray Absorption

    Full text link
    We present observations of the UV absorption lines in the Seyfert 1 galaxy NGC 3516, obtained at a resolution of λ\lambda/Δλ\Delta\lambda \approx 40,000 with the Space Telescope Imaging Spectrograph (STIS) on 2000 October 1. The UV continuum was \sim4 times lower than that observed during 1995 with the Goddard High Resolution Spectrograph (GHRS), and the X-ray flux from a contemporaneous {\it Chandra X-ray Observatory (CXO)} observation was a factor of \sim8 below that observed with {\it ASCA}. The STIS spectra show kinematic components of absorption in Lyα\alpha, C IV, and N V at radial velocities of -376, -183, and -36 km s1^{-1} (components 1, 2, and 3+4, respectively), which were detected in the earlier GHRS spectra; the last of these is a blend of two GHRS components that have increased greatly in column density. Four additional absorption components have appeared in the STIS spectra at radial velocities of -692, -837, -994, and -1372 km s1^{-1} (components 5 through 8); these may also have been present in earlier low-flux states observed by the {\it International Ultraviolet Explorer (IUE)}. Based on photoionization models, we suggest that the components are arranged in increasing radial distance in the order, 3+4, 2, 1, followed by components 5 -- 8. We have achieved an acceptable fit to the X-ray data using the combined X-ray opacity of the UV components 1, 2 and 3+4. By increasing the UV and X-ray fluxes of these models to match the previous high states, we are able to match the GHRS C IV column densities, absence of detectable C IV absorption in components 5 through 8, and the 1994 {\it ASCA} spectrum. We conclude that variability of the UV and X-ray absorption in NGC 3516 is primarily due to changes in the ionizing flux.Comment: 7 figures (note that Fig6 is not referenced in the .Tex file and must be printed separately). There are 6 tables in the .tex file and an additional 8 tables included as separate .ps files. Accepted for Publication in the Astrophysical Journa

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers

    Get PDF
    We present a detailed analysis of the intrinsic absorption in the Seyfert 1 galaxy NGC 4151 using UV spectra from the HST/STIS and FUSE, obtained 2002 May as part of a set of contemporaneous observations that included Chandra/HETGS spectra. In our analysis of the Chandra spectra, we determined that the soft X-ray absorber was the source of the saturated UV lines of O VI, C IV, and N V associated with the absorption feature at a radial velocity of ~ -500 km/sec, which we referred to as component D+E. In the present work, we have derived tighter constrains on the the line-of-sight covering factors, densities, and radial distances of the absorbers. We find that the Equivalent Widths (EWs) of the low-ionization lines associated with D+E varied over the period from 1999 July to 2002 May. The drop in the EWs of these lines between 2001 April and 2002 May are suggestive of bulk motion of gas out of our line-of-sight. If these lines from these two epochs arose in the same sub-component, the transverse velocity of the gas is ~ 2100 km/sec. Transverse velocities of this order are consistent with an origin in a rotating disk, at the roughly radial distance we derived for D+E.Comment: 51 pages, including 12 figures. Accepted for publication in ApJ Supplement

    Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse

    Get PDF
    A terahertz half-cycle pulse was used to retrieve information stored as quantum phase in an NN-state Rydberg atom data register. The register was prepared as a wave packet with one state phase-reversed from the others (the "marked bit"). A half-cycle pulse then drove a significant portion of the electron probability into the flipped state via multimode interference.Comment: accepted by PR

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    On the nature of the galactic early-B hypergiants

    Get PDF
    Despite their importance to a number of astrophysical fields, the lifecycles of very massive stars are still poorly defined. In order to address this shortcoming, we present a detailed quantitative study of the physical properties of four early-B hypergiants (BHGs); Cyg OB2 #12, zeta Sco, HD190603 and BP Cru. These are combined with an analysis of their long-term spectroscopic and photometric behaviour in order to determine their evolutionary status. The long-term datasets revealed that they are remarkably stable over long periods (>40yr), with the possible exception of zeta Sco prior to the 20th century, in contrast to the typical excursions that characterise luminous blue variables (LBVs). Zeta Sco, HD190603 and BP Cru possess physical properties intermediate between B supergiants and LBVs; we therefore suggest that BHGs are the immediate descendants and progenitors (respectively) of such stars (for initial masses in the range ~30-60Msun). In contrast, while the wind properties of Cyg OB2 #12 are consistent with this hypothesis, the combination of extreme luminosity and spectroscopic mass (~110Msun) and comparatively low temperature means it cannot be accommodated in such a scheme. Likewise, despite its co-location with several LBVs above the Humphreys-Davidson (HD) limit, the lack of long term variability and its unevolved chemistry apparently excludes such an identification. Since such massive stars are not expected to evolve to such cool temperatures, the properties of Cyg OB2 #12 are difficult to understand under current evolutionary paradigms. [ABRIDGED]Comment: 36 pages, 19 figures (of which 17 pages are online supplemental material). Accepted for publication in Astronomy and Astrophysic
    corecore