78 research outputs found

    Metaheuristic Approaches For Estimating In-Kind Food Donations Availability And Scheduling Food Bank Vehicles

    Get PDF
    Food banks provide services that allow households facing food insecurity to receive nutritious food items. Food banks, however, experience operational challenges as a result of constrained and uncertain supply and complex routing challenges. The goal of this research is to explore opportunities to enhance food bank operations through metaheuristic forecasting and scheduling practices. Knowledge discovery methods and supervised machine learning are used to forecast food availability at supermarkets. In particular, a quasi-greedy algorithm which selects multi-layer perceptron models to represent food availability is introduced. In addition, a new classification of the vehicle routing problem is proposed to manage the distribution and collection of food items. In particular, variants of the periodic vehicle routing problem backhauls are introduced. In addition to discussing model formulations for the routing problems, a hybrid genetic algorithm is introduced which finds good solutions for larger problem instances in a reasonable computation time

    Fitness benefits of prolonged post-reproductive lifespan in women

    Get PDF
    Most animals reproduce until they die, but in humans, females can survive long after ceasing reproduction. In theory, a prolonged post-reproductive lifespan will evolve when females can gain greater fitness by increasing the success of their offspring than by continuing to breed themselves. Although reproductive success is known to decline in old age, it is unknown whether women gain fitness by prolonging lifespan post-reproduction. Using complete multi-generational demographic records, we show that women with a prolonged post-reproductive lifespan have more grandchildren, and hence greater fitness, in pre-modern populations of both Finns and Canadians. This fitness benefit arises because post-reproductive mothers enhance the lifetime reproductive success of their offspring by allowing them to breed earlier, more frequently and more successfully. Finally, the fitness benefits of prolonged lifespan diminish as the reproductive output of offspring declines. This suggests that in female humans, selection for deferred ageing should wane when one's own offspring become post-reproductive and, correspondingly, we show that rates of female mortality accelerate as their offspring terminate reproduction

    Middleborns disadvantaged? testing birth-order effects on fitness in pre-industrial finns

    Get PDF
    Parental investment is a limited resource for which offspring compete in order to increase their own survival and reproductive success. However, parents might be selected to influence the outcome of sibling competition through differential investment. While evidence for this is widespread in egg-laying species, whether or not this may also be the case in viviparous species is more difficult to determine. We use pre-industrial Finns as our model system and an equal investment model as our null hypothesis, which predicts that (all else being equal) middleborns should be disadvantaged through competition. We found no overall evidence to suggest that middleborns in a family are disadvantaged in terms of their survival, age at first reproduction or lifetime reproductive success. However, when considering birth-order only among same-sexed siblings, first-, middle-and lastborn sons significantly differed in the number of offspring they were able to rear to adulthood, although there was no similar effect among females. Middleborn sons appeared to produce significantly less offspring than first-or lastborn sons, but they did not significantly differ from lastborn sons in the number of offspring reared to adulthood. Our results thus show that taking sex differences into account is important when modelling birth-order effects. We found clear evidence of firstborn sons being advantaged over other sons in the family, and over firstborn daughters. Therefore, our results suggest that parents invest differentially in their offspring in order to both preferentially favour particular offspring or reduce offspring inequalities arising from sibling competition

    The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    Get PDF
    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1(-/-) mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1(-/-) mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1(-/-) mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1(-/-) cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal kilMG was supported by the Erasmus lifelong learning program. FV was supported by the E-rare project EURO-CMC. TK was supported by the National Institutes of Health [grant numbers AI101935, AI124346, AR056296, and CA163507]. AC was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145FEDER-000013), and the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014).info:eu-repo/semantics/publishedVersio

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (<it>Danio rerio</it>) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.</p> <p>Results</p> <p>We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish.</p> <p>Conclusion</p> <p>Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it seems justified to consider it an appropriate representative of these two groups. Among these muscles, the three with clear homologues in tetrapods and the further three identified in sarcopterygian fish are particularly appropriate for comparisons of results between the actinopterygian zebrafish and the sarcopterygians.</p

    Genetic deficiency of NOD2 confers resistance to invasive aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a severe infection that can occur in severely immunocompromised patients. Efficient immune recognition of Aspergillus is crucial to protect against infection, and previous studies suggested a role for NOD2 in this process. However, thorough investigation of the impact of NOD2 on susceptibility to aspergillosis is lacking. Common genetic variations in NOD2 has been associated with Crohn's disease and here we investigated the influence of these  genetic variations on the anti-Aspergillus host response. A NOD2 polymorphism reduced the risk of IA after hematopoietic stem-cell transplantation. Mechanistically, absence of NOD2 in monocytes and macrophages increases phagocytosis leading to enhanced fungal killing, conversely, NOD2 activation reduces the antifungal potential of these cells. Crucially, Nod2 deficiency results in resistance to Aspergillus infection in an in vivo model of pulmonary aspergillosis. Collectively, our data demonstrate that genetic deficiency of NOD2 plays a protective role during Aspergillus infection.We thank C. Wertz and M. Fanton D'Andon for providing Nod2-deficient mice, M. Schlotter for organizing patient inclusion, B. Rosler for assistance with flowcytometry. We also thank the NOD2-deficient patients for contributing to our study by providing blood samples. M.S.G. was supported by the Erasmus lifelong learning program. F.L.v.d.V. was supported by the E-rare project EURO-CMC. M.O. was supported by the NWO, 016.176.006). A.C. and C.C. were supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundacao para a Ciencia e Tecnologia (FCT) (IF/00735/2014 to A.C. and SFRH/BPD/96176/2013 to C. C.)

    Competition and Combative Advertising: An Historical Analysis

    Get PDF
    Fred K. Beard (PhD, University of Oklahoma) is a professor of advertising in the Gaylord College of Journalism and Mass Communication, University of Oklahoma. His research interests include comparative advertising, advertising humor, and advertising history. His work has appeared in the Journal of Advertising, the Journal of Advertising Research, the Journal of Business Ethics, the Journal of Business Research, Journalism History, the Journal of Historical Research in Marketing, the Journal of Macromarketing, and the Journal of Marketing Communications, among others.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore