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Genetic deficiency of NOD2 confers resistance to
invasive aspergillosis
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Invasive aspergillosis (IA) is a severe infection that can occur in severely immunocompro-
mised patients. Efficient immune recognition of Aspergillus is crucial to protect against
infection, and previous studies suggested a role for NOD?2 in this process. However, thorough
investigation of the impact of NOD2 on susceptibility to aspergillosis is lacking. Common
genetic variations in NOD2 has been associated with Crohn’s disease and here we investi-
gated the influence of these genetic variations on the anti-Aspergillus host response. A NOD2
polymorphism reduced the risk of IA after hematopoietic stem-cell transplantation.
Mechanistically, absence of NOD2 in monocytes and macrophages increases phagocytosis
leading to enhanced fungal killing, conversely, NOD2 activation reduces the antifungal
potential of these cells. Crucially, Nod2 deficiency results in resistance to Aspergillus infection
in an in vivo model of pulmonary aspergillosis. Collectively, our data demonstrate that genetic
deficiency of NOD2 plays a protective role during Aspergillus infection.

1C\/tokmes & Inflammation, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France. 2 Department of Experimental Internal Medicine and Radboud Center
for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein zuid 8, 6525GA Nijmegen, The Netherlands. 3 Department of Microbial
Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Kndll Institute, Beutenbergstrafe 11a, 07745 Jena,
Germany. 4 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
51CVS/3B's - PT Government Associate Laboratory, Braga/Guimaraes, Campus de Gualtar, 4710-057 Braga, Portugal. © Department of Immunology, St. Jude
Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA. 7 Département Infection et Epidémiologie, Unité Histopathologie
Humaine et Modeles Animaux, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France. 8 Department of Gastroenterology and Hepatology, Radboud
University Medical Center, Geert Grooteplein zuid 8, 6525GA Nijmegen, The Netherlands. 9 Instituto de Medicina Molecular, Faculdade de Medicina de
Lisboa, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal. 0 Servico de Hematologia e Transplantacdo de Medula, Hospital de
Santa Maria, 1649-035 Lisboa, Portugal. "' Servico de Transplantaco de Medula Ossea (STMO), Instituto Portugués de Oncologia do Porto, Rua Dr. Anténio
Bernardino de Almeida, 4200-072 Porto, Portugal. 12 Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands,
Geert Grooteplein zuid 8, 6525GA Nijmegen, The Netherlands. 1> Department of Microbiology and Immunology, KU Leuven, Herestraat 49 Box 1030, 3000
Leuven, Belgium. " Department of Laboratory Medicine and National Reference Center for Medical Mycology, University Hospitals Leuven, Herestraat 49
Box 1030, 3000 Leuven, Belgium. 1° Department of Hematology, University Hospitals Leuven, Herestraat 49 Box 1030, 3000 Leuven, Belgium. These authors
jointly supervised this work: Oumaima Ibrahim-Granet, Frank L. van de Veerdonk. Correspondence and requests for materials should be addressed to
Frank L. van de Veerdonk. (email: Frank.vandeveerdonk@Radboudumc.nl)

| (2018)9:2636 | DOI: 10.1038/541467-018-04912-3 | www.nature.com/naturecommunications 1


http://orcid.org/0000-0002-9514-4634
http://orcid.org/0000-0002-9514-4634
http://orcid.org/0000-0002-9514-4634
http://orcid.org/0000-0002-9514-4634
http://orcid.org/0000-0002-9514-4634
http://orcid.org/0000-0001-8855-9447
http://orcid.org/0000-0001-8855-9447
http://orcid.org/0000-0001-8855-9447
http://orcid.org/0000-0001-8855-9447
http://orcid.org/0000-0001-8855-9447
http://orcid.org/0000-0002-1059-061X
http://orcid.org/0000-0002-1059-061X
http://orcid.org/0000-0002-1059-061X
http://orcid.org/0000-0002-1059-061X
http://orcid.org/0000-0002-1059-061X
http://orcid.org/0000-0002-7040-9587
http://orcid.org/0000-0002-7040-9587
http://orcid.org/0000-0002-7040-9587
http://orcid.org/0000-0002-7040-9587
http://orcid.org/0000-0002-7040-9587
http://orcid.org/0000-0002-5446-2230
http://orcid.org/0000-0002-5446-2230
http://orcid.org/0000-0002-5446-2230
http://orcid.org/0000-0002-5446-2230
http://orcid.org/0000-0002-5446-2230
http://orcid.org/0000-0001-8668-1350
http://orcid.org/0000-0001-8668-1350
http://orcid.org/0000-0001-8668-1350
http://orcid.org/0000-0001-8668-1350
http://orcid.org/0000-0001-8668-1350
http://orcid.org/0000-0001-8935-8030
http://orcid.org/0000-0001-8935-8030
http://orcid.org/0000-0001-8935-8030
http://orcid.org/0000-0001-8935-8030
http://orcid.org/0000-0001-8935-8030
mailto:Frank.vandeveerdonk@Radboudumc.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

umans are ubiquitously exposed to airborne spores of

Aspergillus, but only severe immunocompromised

patients are at risk of developing pulmonary invasive
aspergillosis (IA)!. Patients undergoing hematopoietic stem cell
transplantation (HSCT) have a distinctive elevated susceptibility
to aspergillosis and infections in these patients are associated with
a high mortality>. With increasing knowledge of the antifungal
host response, it has become evident that not only the immu-
nocompromised status of patients plays a role in susceptibility to
infection, but also the genetic background of both the engrafted
bone marrow and the recipient’. To provide a good risk strati-
fication for the development of IA following HSCT, genetic
susceptibility needs to be taken into account. Common poly-
morphisms in various pattern recognition receptor (PRR) path-
ways are known to be associated with an increased risk for
aspergillosis, which includes dectin-1>%, pentraxin-3° as well as
many other receptors®. These findings help to predict suscept-
ibility, yet also provide insight into the importance of these
pathways in antifungal host defence. These studies, therefore, may
also aid in the development of novel immune targeted treatment
strategies. Nevertheless, several immune pathways remain unex-
plored for susceptibility to aspergillosis.

One of these relatively unexplored receptor families are the
NACHT-LRR receptors (NLRs), to which the intracellular
nucleotide-binding oligomerization domain (NOD) receptors
belong. The NLR receptor Nlrp3 plays a role in IA via regulation
of inflammasome activation and subsequently protective IL-1-
mediated cytokine responses’. Two other NLR receptors NOD1
and NOD2 are primarily involved in the recognition of
peptidoglycan-derived moieties from bacteria and in the induc-
tion of proinflammatory host responses®~'2. Although Aspergillus
does not contain peptidoglycan, some evidence suggests
that these NOD receptors might play a role in host defence
against aspergillosis'>~16, In contrast to a previous study that
demonstrated a crucial role for NOD1 in activation of corneal
epithelial cells by Aspergillus'®, we recently reported that NOD1
negatively modulates host defence by reducing cytokine responses
and oxidative burst'”. NOD2, another member of the NLR family
is highly expressed in lungs of mice infected with Aspergillus, and
in THP1 cells, RAW macrophages and A549 cells stimulated with
Aspergillus'>'%. The NOD2 agonist Muramyl-dipeptide (MDP)
can synergistically increase Aspergillus-induced cytokine
levels!>!4. NOD2 also may play a role in host defence against
fungal keratitis'>!®. Recently, NOD2 was also suggested to play a
role in the recognition of chitin'®, a polysaccharide that is present
in the cell wall of all fungi. Polymorphisms in NOD2 have been
associated with host defence against infectious diseases. In par-
ticular, strong associations between NOD2 polymorghisms and
susceptibility to tuberculosis have been identified'=2%. It should,
however, be noted that the strongest genetic association with
NOD?2 is with Crohn’s disease??. Polymorphisms in NOD2 impact
autophagy and antigen presentation in host defence against
bacteria®®. Considering recent evidence suggesting a crucial role

for the autophagy machinery in host defence against Aspergil-
lus*>, NOD2 is a candidate susceptibility gene for aspergillosis.

Although previous studies have revealed enhanced expression
of NOD2 during aspergillosis and synergism with Aspergillus-
induced cytokine responses, these studies did not thoroughly
investigate whether NOD2 modulates anti-Aspergillus host
defence. Additionally, it is unknown whether defective NOD2
signalling influences susceptibility to aspergillosis. Therefore, the
present study investigates whether common polymorphisms in
NOD2 or its complete deficiency influences susceptibility to IA,
and whether it affects the immune response to Aspergillus. We
demonstrate that genetic variation in NOD2 in humans and
complete Nod2 deficiency in mice protects against IA. In line with
this, NOD2 deficiency or its neutralization associates with
increased antifungal activity of macrophages and monocytes,
conversely NOD2 activation neutralizes fungal killing capacity of
phagocytes. Our data collectively highlight a detrimental role for
NOD2 receptor in anti-Aspergillus host defence.

Results

NOD?2 genetic variation decreases the risk of IA after HSCT. To
investigate the relationship between genetic variability in NOD2
and susceptibility to IA, four nonsynonymous SNPs in the NOD2
coding sequence were analysed (Table 1). The probability of IA
was assessed according to recipient or donor genotypes by esti-
mating the cumulative incidence of infection among transplant
recipients at 24 months after HSCT. Among the SNPs tested, the
donor, but not recipient, P268S (rs2066842) SNP in NOD2 was
associated with an increased risk of IA (Fig. la). Other poly-
morphisms did not allow accurate risk estimations due to low
(<0.05) allele frequencies in our study population. The cumulative
incidence of IA for donor P268S was 32.7% for the CC genotype,
21.6% for CT and 20.0% for TT genotypes, respectively (Fig. 1a).
The key contribution of the CC genotype to the risk of infection
was further illustrated upon modelling a dominant mode of
inheritance (cumulative incidence of 1A, 32.7% for CC vs. 21.3%
for CT and TT genotypes combined) (Fig. 1b). In a multivariate
model accounting for age, gender, post-transzplant neutropenia
and acute graft-versus-host disease (GVHD) 6, the donor CC
genotype at P268S conferred a 2.1-fold increased risk of devel-
oping IA after transplantation (95% CI, 1.15-4.47; p =0.021;
p-values calculated using Gray’s test). Collectively, these results
highlight genetic variation at the NOD2 locus as a critical risk
factor regulating susceptibility to IA after HSCT.

The NOD2 P268S SNP alters pulmonary cytokine levels in IA.
To assess whether the genotypes at P268S in NOD?2 differentially
regulate pulmonary inflammation in aspergillosis, cytokine levels
in bronchoalveolar lavage (BAL) samples from patients with IA
were assessed. Genotype-specific differences were observed, with
patients transplanted with bonemarrow carrying the TT genotype
displaying lower median concentrations of IL-10 and IL-8 than

Table 1 Description of the SNPs in the NOD2 gene evaluated in our study

RefSNP Genome coordinates aa change Alleles CEU MAF MAF in our study HWE

rs2066842 chr16:50710713 P268S C>T 0.102 0.278 0.72
rs2066844 chr16:50712015 R702W C>T 0.014 0.027 0.77
rs2066845 chr16:50722629 G908R G>C 0.005 0.002 1.00
rs2066847 chr16:50729867 1007fs —>C 0.006 0.022 0.98

allele frequency, HWE Hardy Weinberg Equilibrium

Publically available sequencing data from Pilot 1 of the 1000 Genomes Project (www.1000genomes.org) was used to determine MAF. Genome coordinates were extracted from the hg18 build
SNP single-nucleotide polymorphism, aa amino acid, P prolins, S serine, R arginine, W tryptophan, G Glycine, fs frameshift, CEU Utah Residents (CEPH) with Northern and Western Ancestry, MAF minor
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Fig. 1 Genetic variation in donor P268S (rs2066842) confers resistance to IA after HSCT. Shown are the results obtained in a cohort comprising 310

eligible patients and respective donors. Cumulative incidence of IA according

to (a) donor or recipient genotypes at rs2066842 or b a dominant genetic

model of donor genotypes at rs2066842. In a, the blue line represents the carriers of the reference (ref) CC genotype, the red line carriers of the

heterozygous CT genotype, and the yellow line represents carriers of the homozygous TT genotype. In the dominant model (b) red line represents the
carriers of both the CT and TT genotypes. Data were censored at 24 months, and relapse and death were considered competing events. p-values were
calculated using Gray's test. ¢ IL-1B, TNF, IL-6, IL-8, IL-17A, and IL-10 levels measured in the BAL of patients with aspergillosis and stratified based on the
NOD2 rs2066842 donor genotypes. Each dot represent an individual patient, with black filled dots representing HSCT donor carriers of the reference CC
genotype, half filled black/gray dots representing carriers of the heterozygous CT genotype, and gray dots representing carriers of the homozygous TT

genotype. Data are represented scatter dot plot with the median; with p-values
are shown within the graphs

CC + CT carriers (0.41 vs. 2.6 pg/mL; and 1125 vs. 2560 pg/mL).
In addition, a trend toward decreased IL-6 and TNF levels was
also observed among patients transplanted with bonemarrow
from TT carriers (Fig. 1c). Collectively, these findings point to a
NOD?2 genotype-determined alteration in cytokine production in
response to Aspergillus infection.

NOD?2 variants alter A. fumigatus-induced cytokine responses.
To examine the impact of NOD2 variation on host defence
against Aspergillus, the impact of the NOD2 genetic variants on
Aspergillus immune recognition and cytokine production was
investigated. In vitro Aspergillus-induced cytokine responses
of primary human PBMCs were stratified based on P268S
(rs2066842), G908R (rs2066845), and R702W (rs2066844) gen-
otypes, to investigate their influence on cytokines responses to
A. fumigatus.

Individuals carrying the T-allele at P268S, which was associated
with a reduced susceptibility to aspergillosis in patients (Fig. 1),
induced significantly lower IL-1p and demonstrated a trend
toward lower TNF production in response to Aspergillus
stimulation (Fig. 2a). Additionally, the TT-genotype was
associated with significantly lower IL-17A responses compared
with individuals carrying the CC or CT genotypes (Fig. 2b).
Heterozygous carriers of the G908R and R702W polymorphisms
did not show significantly altered cytokine responses to
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were calculated using the Mann-Whitney U test, p-values of statistical tests

Aspergillus (Supplementary Fig. 1), and homozygous carriers of
these polymorphisms were not represented within our cohort.
Insertion of a cysteine at position 1007 (1007finsC)
(rs2066847) induces a frameshift, which results in a defective
NOD2 receptor, and homozygous carriage of this mutation
results in complete NOD?2 deficiency and is highly associated with
Crohn’s disease?’. Healthy individuals heterozygous for this
mutation demonstrated significantly lower IL-1f and a trend
toward lower TNF, but not IL-6 responses to Aspergillus (Fig. 2c).
The decreased IL-1pB correlated with significantly lower IL-17A
responses in individuals carrying the Cysteine-insertion on one
allele (Fig. 2d). Interestingly, Aspergillus-induced IFNy or IL-22
production was not affected by this genotype (Fig. 2d).

The 1007insC frameshift mutation enhances fungal killing. For
the P268S and 1007insC polymorphisms the impact on fungal
killing capacity was evaluated. Although, the P268S polymorph-
ism did not significantly impact Aspergillus killing (Fig. 2e),
PBMCs of healthy individuals carrying the Cysteine-insertion
(rs2066847) on one allele had a significantly increased capacity to
neutralize Aspergillus-conidia (Fig. 2f). Production of reactive
oxygen species (ROS) is highly important for host defence against
aspergillosis, especially when considering that CGD patients that
cannot produce ROS are highly susceptible to aspergillosis?®.
However, oxidative burst in response to Aspergillus was not
influenced by the different NOD2 genotypes (Fig. 2g, h).
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Fig. 2 Human NOD2 polymorphisms influence Aspergillus-induced cytokine responses and fungal killing. a-d IL-1B, TNF, IL-6, IL-17A, IL-22, and IFNy levels
measured in culture supernatants of PBMCs stimulated with (a, €) live Aspergillus conidia for 24 h or (b, d) heat-inactivated (HI) Aspergillus conidia for
7 days. The PBMCs of individuals with various genotypes of the NOD2 gene were compared. These genotypes included (a, b) the P268S mutation
(rs2066842; reference: CC n = 36, heterozygous: CT n= 28 and homozygous: TT n=4) and (¢, d) the 1007finsC mutation (rs2066847; reference n =62
and heterozygous: insC n = 4). e, f Fungal killing capacity of human PBMCs assessed as CFU remaining of A. fumigatus (2 x 109) following exposure for 24
h to (5x10°%) PBMCs results are stratified based on the e P268S (rs2066842; ref: CC n= 49, heterozygous: n =45 and homozygous: TT n=7) and (f)
1007finsC (rs2066847; ref n =98 insC n=7) genotypes. g, h Area under the curve (AUC) of relative light units (RLU) induced by luminol oxidation by
reactive oxygen species (ROS) released by PBMCs, results are stratified based on the (g) P268S (rs2066842; reference: CC n =47, heterozygous: n =50
and homozygous: TT n=9) and (h) 1007finsC (rs2066847; ref n =112 insC n = 5) genotypes. Data are represented scatter dot plot with the median. Each
dot represent an individual patient, with (a, b, e, g) black filled dots representing carriers of the ancestral (reference) CC genotype, half-filled black/gray
dots representing carriers of the heterozygous CT genotype, and gray dots representing carriers of the homozygous TT genotype, and (¢, d, f, h) black filled
dots representing carriers of the reference (ref) genotype without insertion and half-filled black/gray dots representing carriers of one Cysteine insertion
(insC). The means were compared using the Mann-Whitney U test, p-values of statistical tests are shown within the graphs

Human NOD2 deficiency reduces Aspergillus-induced cyto-
kines. To further investigate the importance of NOD2 in Asper-
gillus-induced cytokine response, we analysed responses of
primary human PBMCs within a background of complete NOD2
deficiency. PBMCs from patients with Crohn’s disease, homo-
zygous for the 1007finsC polymorphism and thus deficient for the
NOD2 receptor, were stimulated with A. fumigatus. NOD2-
deficient PBMCs demonstrated significantly lower IL-1p and TNF
responses compared to controls (Fig. 3a). NOD2 deficient PBMCs
also showed a significant reduction in production of the T-helper
cytokines IL-22 and Interferon(IFN)y and a trend toward
decreased IL-17A induced by conidia (Fig. 3b). These reduced
cytokine responses correlated with a reduced capacity to expand
populations of IL-17A", TL-22%, and IFNy" CD4 T-cells
(Fig. 3c). Similar to individuals with heterozygous 1007insC
mutations, the homozygous individuals demonstrated a trend
toward improved fungal killing (Fig. 3d). However, no change in
the capacity to induce ROS by zymosan or Aspergillus was
observed (Fig. 3e).

Nod2~/~ mice are less susceptible to IA. Since NOD2 genetic
variation was associated with a reduced risk of IA, the impact of
full Nod2 deficiency on susceptibility to aspergillosis was vali-
dated in an experimental model of IA. Wild-type (WT) C57BL/6
and Nod2-deficient (Nod2~/~) C57BL/6 mice were immuno-
suppressed using cyclophosphamide and subsequently subjected
to lethal Aspergillus infection?®. Nod2~/~ mice demonstrated a
significantly improved 14-day survival, compared to WT mice
(Fig. 4a). During infection, WT mice decline in bodyweight and
seven out of eleven mice did not survive the infection whereas

eight out of nine Nod2~/~ mice survived the infection, despite
having similar weight loss as WT mice during the first 3 days of
infection (Fig. 4b). Although Nod2~/~ mice demonstrated severe
symptoms such as hunching, head tilting, and circling, symptoms
that have been described in the in vivo aspergillosis mouse
model®?, they survived the infection, in contrast to WT mice.
Bioluminescence imaging revealed that Nod2™~ mice rapidly
cleared the luciferase-expressing Aspergillus, whereas WT mice
developed a fungal infection as indicated by a significantly higher
luminescence signal on day 3 post infection (pi) (Fig. 4c, d). After
day 3 pi the luminescence could not be reliably compared
between groups due to mice dropping out of the experiment
(Supplementary Fig. 2), and severe hypoxia in critically ill mice
that influences bioluminescence readout. For assessment of his-
topathological damage in the lungs, inflammation and fungal
burden, mice were sacrificed on day 3 pi. The decreased biolu-
minescence signal in the lungs of Nod2~/~ mice correlated with
the fact that almost no Asperﬁillus DNA could be detected in the
lung homogenates of Nod2™~ mice (3 out of 8 mice were PCR
positive with low values). However, in the lung homogenates of
WT mice, Aspergillus PCR was positive for 5 out of 8 mice
(Fig. 4e).

Nod2~/~ mice show reduced pulmonary histopathological
damage. Using histopathological analysis differences inflamma-
tory and pathological damage to the lungs and sinuses of WT and
Nod2~'~ mice were assessed. Within the lungs, WT mice dis-
played multifocal large areas of ischaemic necrosis (Fig. 5a I,
circles and arrowheads), with fibrinous thrombi and destruction
of blood vessels (Fig. 5a II, arrow). In contrast, Nod2~'~ mice
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rarely displayed inflammatory infiltrates and when present small
(Fig. 5a I, circle and arrowhead; II, arrow). Severe fungal invasion
was observed in WT mice (Fig. 5a III) with a high density of
hyphae that invaded blood vessels (Fig. 5a III arrow). In contrast,
fungi were rarely observed in lungs of Nod2~/~ mice, only conidia
(Fig. 5a III arrow), without invasion of the parenchyma or blood
vessels. Macrophages were observed in the lesions, either ran-
domly distributed (Fig. 5a IV, wild-type mice) or gathered in the
small infiltrates (Fig. 5a IV, Nod2~/~ mice). Although the immune
suppression drastically decreased the number of F4/80™ cells no
differences were observed between the groups (Fig. 5a IV).

Using morphometric analysis, the average number of lesions
per section and the affected area was quantified. WT mice had a
trend towards a higher average number of lesions per section
(Fig. 5b). Moreover, the affected area of the lesions was
significantly larger in WT mice (Fig. 5b).

Additional histology slides confirmed our morphometric analy-
sis, as WT mice displayed marked lung lesions characterized by
large foci of ischaemic necrosis (Fig. 5¢ I: left of the black line) with
destruction of the bronchi/bronchiole epithelium (Fig. 5¢ I, black
arrowheads), fungal invasion of lung parenchyma (Fig. 5¢ II top
row), destruction of alveoli (Fig. 5c III top row) and invasion of
blood vessels (Fig. 5¢ IV top row). Similar lesions were observed in
other WT mice (Fig. 5¢ second row) with invasion of blood vessels
(Fig. 5¢ III second row) and hyphae crossing the bronchiole
epithelium linin§ (Fig. 5¢ IV second row, black arrowhead). In
contrast, Nod2™'~ mice displayed no or minimal lesions (Fig. 5¢
third and fourth row). At a low magnification, no lesions could be
observed (Fig. 5¢ I, II fourth row), whereas at a high magnification),
few hyphae could be detected in the alveoli/alveolar walls (Fig. 5¢
III, IV fourth row, black arrowheads).

WT mice displayed invasive sinusitis, whereas nasal sinus
lesions were absent in Nod2~/~ mice (Fig. 6). Arrowheads

indicate destruction of nasal mucosa (Fig. 6a, enlarged in Fig. 6b),
and invasion of fungi (Fig. 6¢). Nasal sinuses of Nod2 ™/~ mice
did not demonstrate any signs of destruction (Fig. 6d, e) or
presence of fungi (Fig. 6f).

NOD?2 augments Aspergillus-induced cytokine responses. Since
NOD?2 genetic variation and its complete deficiency correlated
with a decreased cytokine release, the capacity of NOD2
signalling to boost Aspergillus-induced cytokine responses was
investigated. Co-stimulation of NOD2 by MDP augmented
Aspergillus-induced IL-1p and TNF responses (Fig. 7a). This
could, however, not be achieved in cells of Crohn’s disease
patients carrying the 1007finsC mutation (Fig. 7b). Similarly,
cytokine responses to A. fumigatus by cells of Nod2~/~ mice were
investigated. Although BMDMs of Nod2™/~ mice did not
demonstrate altered IL-6, KC and TNF responses (Fig. 7c),
splenocytes of Nod2~/~ mice showed a reduced capacity to
mount IL-6, KC, and TNF responses (Fig. 7d)

NOD?2 inhibits phagocytosis and killing of A. fumigatus. The
reduced susceptibility of Nod2~/~ mice and patients with NOD2
genetic variants may be explained by enhanced killing capacity
of myeloid cells due to their NOD2 deficiency, as monocytes
from NOD2-deficient individuals demonstrated a trend toward
Aspergillus killing (Fig. 3d). BMDMs from WT and Nod2~/~
mice were compared for their fungal killing capacity, and
Nod2~/~ BMDM:s proved to be more efficient at eradicating live
Aspergillus conidia (Fig. 8a). Subsequently, NOD2 gene expression
was silenced in human monocyte-derived macrophages (MDMs)
to validate that the absence of NOD?2 also positively influences
fungal killing in human cells. Treatment of MDMs with NOD2
targeting siRNA augmented fungal killing capacity (Fig. 8b). Since
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Fig. 4 Nod2~/~ deficient mice have a reduced susceptibility to aspergillosis. Comparison of the susceptibility of wild-type mice (WT; black lines with
circles) and Nod2-deficient mice (Nod2~~; blue lines with squares) to invasive aspergillosis. a Kaplan-Meier survival curve of cyclophosphamide
immunosuppressed WT (n =12) and Nod2~/~ (n = 9) mice infected intranasally with 5 x 104 conidia. p-values of the Kaplan-Meier curve were determined
with the use of the log-rank test. Data represent the cumulative data of four separate experiments. b Percentage weight loss following cyclophosphamide
immunosuppression and intranasal Aspergillus infection (5 x 104/mouse) in WT (n=20) and Nod2~/~ (n=17) mice (p = 0.3515) (¢, d) Luminescence
signal at day 1 to 3 post infection from the luminescent Aspergillus originating from lung and sinus regions in WT (n=20) and Nod2~/~ (n=17) mice.
Curves were compared by repeated measurements two-way ANOVA. e Fungal burden as determined by amplification of Aspergillus ITS2 regions from lung
homogenates. Data in graphs are represented as mean = SEM or in scatterplots with a line indicating the median. The means were compared using the
Mann-Whitney U test, p-values of statistical tests are shown within the graphs, luminescence and weight curves were compared for significance using a

two-way repeated measurements ANOVA

the absence of NOD2 positively influences fungal killing we
hypothesized that NOD2 activation might impair antifungal host
defence. Human MDMs were, therefore, pre-exposed to the
NOD2 agonist MDP and subsequently fungal killing capacity was
examined. In line with the observation that NOD2 deficiency and
silencing is associated with increased Aspergillus killing capacity,
NOD?2 activation conversely reduced the capacity of human
MDMs to kill Aspergillus spores (Fig. 8c).

Several antifungal mechanisms could account for the observed
increased killing capacity of Aspergillus in monocytes and
macrophages. Phagocytosis and ROS production are well-
established factors that influence the fungal killing capacity.
Therefore, these two possible mechanisms were systematically
addressed to explain increased killing. Nod2~/~ BMDMs
demonstrated an enhanced capacity to engulf FITC-labelled A.
fumigatus conidia, illustrated by a higher percentage FITC-
positive macrophages and an overall higher mean fluorescence
intensity (MFI) of the macrophages (Fig. 8d), indicating that
more conidia were engulfed and more cells were actively
engulfing conidia. Similarly, human MDMs in which NOD2
was silenced showed a trend towards an increased phagocytosis

(Fig. 8e). Conversely, MDP-stimulated MDMs demonstrate a
reduced phagocytosis of FITC-labelled conidia (Fig. 8f).

Although no influence of human NOD2 deficiency on ROS
production was found (Fig. 3e), we wanted to validate that ROS
production was indeed not influenced by NOD2 deficiency and
NOD2 stimulation. BMDMs of WT and Nod2™/~ mice
stimulated with zymosan demonstrated a similar capacity to
produce ROS (Fig. 8g). NOD2 stimulation of human MDMs also
did not influence ROS production in response to zymosan
stimulation (Fig. 8h). These data suggest that the observed
increased killing in the setting of NOD2 deficiency is due to
enhanced phagocytosis and not via increased ROS production in
contrast to NODI deficiency!’.

NOD2 negatively regulates dectin-1 expression. One of the most
crucial receptors for A. fumigatus recognition and engulfment is
dectin-1. Therefore, we investigated whether NOD2 influenced
the expression of dectin-1. Nod2™/~ BMDMs showed an
increased expression of Clec7a, the gene encoding dectin-1
(Fig. 8i). Similarly, silencing NOD2 in human MDMs slightly
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Fig. 5 Nod2~/~ mice show reduced histological damage and fungal burden following Aspergillus infection. a Histology of lung sections of wild-type and
Nod2~/~ mice at day 3 pi, stained in HE (I, II), Grocott's Methenamine Silver (ll) or labelled using anti-F4/80 antibody (specific for macrophages),

counterstained with Haematoxylin staining. Scale bars represent Tmm (1) and 200 pm (II-IV). b Morphometric analysis of the lesions in the whole lung
sections using Image J software to quantify the lesions in number and size. ¢ Representative lung sections of two additional WT and Nod2~~ mice, stained
in HE (1) and Grocott's Methenamine Silver (II-1V). Scale bars represent 200 pm (I, I1) and 50 pm (I, IV), means were compared for significance using the

Mann-Whitney U test

enhanced CLEC7A mRNA expression (Fig. 8j). Conversely, MDP
stimulation reduced surface dectin-1 expression on human
MDMs (Fig. 8k).

MDP inhibits antifungal immunity in WT cells. To verify
that MDP did not have off-target effects negatively influencing
fungal killing, phagocytosis, and dectin-1 expression, monocytes

of healthy volunteers that were wild type for the investigated
NOD?2 SNPs were compared with three NOD2-deficient patients.
Similarly, fungal killing was assessed in murine BMDMs. MDP
significantly reduced in murine BMDMs (Fig. 9a) and in human
monocytes fungal killing (Fig. 9b), phagocytosis (Fig. 9¢), and
dectin-1 expression (Fig. 9d), whereas in the cells of Nod2~/~ mice
or NOD2-deficient patients no effect of MDP could be detected.
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NASAL SINUS

Fig. 6 histology of nasal sinuses Histology of Nasal Sinuses of (a-c) wild-type and (d-f) Nod2~”~ mice at day 3 pi, stained by HE staining at (a, d) x2 and
(b, e) x10 magnification and (¢, f) Grocott's Methenamine Silver staining at x20 magnification. Scale bars represent (a, d) 500 pm, (b, ) 200 pm, and (¢,
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Fig. 7 NOD?2 activation positively regulates cytokine production. a, b Aspergillus-induced IL-1p and TNF levels in the culture supernatants of human PBMCs
(5 x10°) of (a) healthy volunteers (n =13) represented as black dots or (b) NOD2-deficient patients (n = 6) represented as grey dots in the presence or
absence of (10 pg/mL) MDP. Data is represented as scatter dot plot with median and means were compared using the Wilcoxon signed rank test was
paired comparisons. ¢, d Aspergillus-induced IL-6, KC, and TNF levels in the culture supernatants of murine (¢) BMDMs and (d) splenocytes of wild-type
(WT, black dots) and Nod2-deficient (Nod2~~, grey dots) mice. Data are represented scatterplots with a line indicating the median and means were

compared using the Mann-Whitney U test

Discussion

PRRs are key players in activating the antifungal host response
during invasive aspergillosis (IA) by inducing cytokine responses
and facilitating phagocytosis with subsequent fungal killing. PRRs
on the cell surface, such as Toll-like receptors and C-type lectin
receptors, have been extensively described in inducing these
responses in host defence against Aspergillus>!. Genetic variation

8

in PRRs is common in the general population, however, in
hematopoietic stem cell transplant patients (HSCT), such varia-
tions can drastically impact susceptibility to IA®. The only
intracellular PRRs explored to date, NLRP3 and NOD1 belonging
to the NLRs, provide evidence that this class of receptors can
modulate host responses against A. fumigatus”>'”. However, one
of the most well known NLRs that is directly linked with
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Fig. 8 NOD2 negatively regulates, fungal killing, phagocytosis, and dectin-1 expression. a-¢ The fungal killing capacity of macrophages (1 x 10°) assessed by
CFU remaining of A. fumigatus (2 x 10°) following exposure for 24 h, in (a) wild-type and Nod2~/~ BMDMs (n =16 WT, n =12 Nod2™” ). b human GM-
CSF differentiated MDMs treated (n = 9) for 48 h with siRNA targeting NOD2 or non-targeting siRNA, and ¢ human GM-CSF differentiated MDMs (n=9)
treated for 48 h with the NOD?2 ligand (10 pg/mL) MDP. Phagocytosis efficiency assessed as percentage of macrophages that engulfed FITC-labelled A.
fumigatus conidia and mean fluorescence intensity of the total macrophage population in (d) wild-type and Nod2~/~ BMDMs (n =16 wt, n=12
Nod2~/7), (e) human GM-CSF differentiated MDMs (n = 9) treated for 48 h with siRNA targeting NOD2 or non-targeting siRNA, and (f) human GM-CSF
differentiated MDMs (n = 6) treated for 24 h with the NOD2 ligand (10 pg/mL) MDP. g, h The area under the curve of the reactive oxygen species release
of (g) wild-type (n = 6) and Nod2~/~ (n = 6) BMDM:s or (h) human MDMs (n = 5) treated for 24 h with the NOD2 ligand (10 pg/mL) MDP in response to
zymosan (150 ug/mL) measured by luminescence signal from luminol conversion over 1h. i Dectin-1 (Clec7a) expression assessed by qPCR in wild-type
and Nod2~”~ BMDMs (n=14 wt, n =10 Nod2~/"), (j) NOD2 (n=8) and CLEC7A (n=6) mRNA expression in human GM-CSF differentiated MDMs
treated for 48 h with siRNA targeting NOD2 or non-targeting siRNA, and (k) Surface dectin-1 expression measured by flow cytometry on human GM-CSF
differentiated MDMs treated for 28 h with the NOD2 ligand (10 pg/mL) MDP. Data is represented as scatter dot plot with median with (a, d, g) black dots
representing wild-type mice and grey dots representing Nod2 deficient mice, (b, e, j) black squares representing human macrophages treated with
scrambled siRNA and grey squares human macrophages treated with NOD2 targeting siRNA, and black triangles representing MDMs without MDP pre-
treatment and grey triangles MDMs with MDP pre-treatment. Means were compared using the Mann-Whitney U test for murine BMDMs (a, d, g, i) and
the Wilcoxon signed-rank test was paired comparisons following siRNA treatment (b, e, j), or MDP stimulation (¢, f, h, k)

immunodysregulation that leads to disease?’, namely NOD2,
remains largely unexplored in the context of anti-Aspergillus host
defence!3~1°, Here, we systematically addressed the role of NOD2
in susceptibility to Aspergillus infection.

We report an association between NOD2 genetic variation,
Nod?2 deficiency and decreased susceptibility to IA. Specifically,
the TT-genotype at P268S confers resistance to IA after HSCT, a
finding highlighting a potential NOD2-dependent detrimental

effect on antifungal immunity. A potential limitation of our study
is the lack of association for other NOD2 polymorphisms even-
tually with more noticeable loss-of-function phenotypes. This
may, however, be explained by the low allele frequency of such
variants, which do not allow accurate risk estimations. A previous
study also investigated NOD2 polymorphisms in association with
aspergillosis in HSCT patients. Although in this study a lack of
association due to the low frequency of the variants was observed
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Fig. 9 MDP negatively affects antifungal host response only in the presence of functional NOD2. a, b The fungal killing capacity of (a) murine BMDMs
(n=28 wt and n=6 Nod2~”~) and (b) human monocytes (1x10°) assessed by CFU remaining of A. fumigatus (2 x 108) following exposure for 24 h. ¢
Phagocytosis efficiency assessed as percentage of monocytes that engulfed FITC-labelled A. fumigatus conidia and mean fluorescence intensity of the total
macrophage population, (d) surface dectin-1 expression measured by flow cytometry in cells of healthy controls (co) (n=6) as well as NOD2-deficient
patients (NOD2~/~ PT) (n= 3). Data are represented as scatterplot with median, black dots represent wild-type and grey dots represent NOD2-deficient
cells. Means were compared using the Wilcoxon signed-rank test for paired comparisons except for the comparison of WT with Nod2”~ cells which were

compared using the Mann-Whitney U test

for 1007finsC and G908R polymorphisms®?, a strong trend
(p=10.05) towards a reduced presence of the mutated R702W
allele was observed in IA patients2.

Functionally, we demonstrate that in particular the 1007finsC
polymorphism impacts the response of primary immune cells to
Aspergillus, namely in cytokine signalling and fungal killing,
whereas we only observed an effect of the P268S polymorphism
on cytokine responses.

Immunosuppression and cytostatic drugs needed for the
treatment of cancer and autoimmune disorders makes patients
highly susceptible to invasive fungal infections such as IA.
Cyclophosphamide is a drug used to treat hematological malig-
nancies or to suppress the immune system to preventgraft
rejection and renders mice highly susceptible to develop infec-
tions with Aspergillus fumigatus. This immunosuppression allows
a low dose of intranasally administered conidia to cause an
invasive infection that is lethal within days, which in immuno-
competent mice would have been efficiently cleared®’. Nod2-
deficient mice were resistant against aspergillosis despite being
immunosuppressed and showing severe symptoms of aspergillo-
sis such as weight loss, hunching, head tilting, and circling®.
The protection observed in Nod2~/~ mice was associated with
reduced fungal burden and reduced histopathological damage to
the lungs. A deficiency in PRRs being protective against lethal
aspergillosis is a striking observation. Especially since it is chal-
lenging to protect immunosuppressed mice even with available
potent antifungal therapies, which often requires combinational
therapies to achieve survival of these mice3>34,

The fact that we observe protection of Nod2 deficiency in an
immunocompromised mouse model raises the question which
cells are responsible for the protection. We observed resident
macrophages, that remain in the lung even after immunosup-
pressive therapy, which could potentially mediate fungal killing.
In the HSCT patients, the NOD2 P268S polymorphism was only
associated with a reduced incidence of aspergillosis in the donor
genotype. The donor genotype will represent the genotype of
the patient’s myeloid cells following transplantation suggesting
that the protective effect of NOD2 genetic variation lies within the
myeloid compartment. Furthermore, we observe that NOD2
negatively affects the antifungal capacity of various types of
myeloid cells, including murine BMDMs, human MDMs and
human monocytes.

Interestingly, Staphylococcus aureus pneumonia in Nod2-
deficient mice was less severe than in wild-type animals due to
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reduced pulmonary inflammation®>. We observed that some
cytokines have lower levels in the BAL of aspergillosis patients
having the TT-genotype at P268S (rs2066842). This might indi-
cate a less severe infection that may be related to enhanced fungal
killing. Nevertheless, we observed that NOD2 polymorphisms,
as well as the complete deficiency of the receptor, were associated
with decreased Aspergillus-induced pro-inflammatory cyto-
kine responses. NOD2 stimulation augments Aspergillus-induced
cytokine responses. It has been widely described that excessive
inflammation, and in particular IL-17-mediated inflammation,
can result in detrimental immunopathology during Aspergillus
infections in mice>®~3%, but this is primarily observed in situations
where the immune system is largely functional such as cystic
fibrosis, allergic bronchopulmoary aspergillosis, corticosteroid,
and fully immunocompetent models. Although reduced cytokine-
driven inflammation can contribute to less damage in certain
aspergillosis models, a lower capacity to mount early cytokine
response is also known to be a primary risk factor for suscept-
ibility*’. Based on our data, we can only conclude that NOD2 has
a potential to modify Aspergillus-induced cytokines in vitro, but it
needs to be elucidated whether this in any way contributes to the
observed protection in HSCT patients with NOD2 variants and
Nod2~/~ mice.

What could then be the mechanism of protection in the setting
of genetic NOD2 deficiency? Carriage of the 1007finsC poly-
morphism correlates with an increased fungal killing capacity. In
addition, Nod2-deficient mice demonstrated improved fungal
clearance compared to WT mice, which was associated with an
absence of histological damage and fungal outgrowth within the
lungs. In addition Nod2 deficiency in murine BMDMs or NOD2
silencing in human MDMs augments fungal killing, whereas
NOD2 stimulation by MDP in human MDMs or monocytes
suppresses fungal killing. Subsequently, we systematically
addressed whether phagocytosis capacity and/or ROS production,
which are well-established mechanisms needed for the killing of
Aspergillus, would be altered in NOD2-deficient cells. We
observed no effect on the ROS production. However, observed
that NOD2 negatively regulates phagocytosis. Silencing of NOD2
gene expression slightly enhanced engulfment of A. fumigatus
conidia, whereas NOD2 stimulation suppressed the phagocytic
capacity of human MDMs and monocytes. Nod2~/~ BMDMs
were more efficient at engulfing A. fumigatus conidia than their
WT counterparts. This is in line with a previous report showing
that NOD2 polymorphisms improve phagocytosis of the

| (2018)9:2636 | DOI: 10.1038/541467-018-04912-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

gram-negative bacterium Escherichia coli*!. However, in NOD2-
deficient patients, we did not observe augmented phagocytosis
compared to healthy donor cells. At first sight this might argue
against a role for NOD2 in phagocytosis, however, it needs to be
taken into account that the rate of phagocytosis is already variable
between humans. This is most likely explained by a different
genetic background and, in the case of our patients, maybe
even immunosuppressive medication. Comparing WT and Nod2-
deficient murine cells and silencing of the same human cells
making them NOD?2 deficient practically eliminates these donor
factors that contribute to variability of phagocytosis. To prove
that NOD?2 influences phagocytosis in human cells we made use
of the following knowledge. NOD?2 is a receptor for derivates of
bacterial peptidoglycan, such as MDP, which is present in the
peptidoglycan of both gram positive and negative bacteria®!®!1,
When we studied killing and phagocytosis of Aspergillus in the
presence or absence of MDP we observed that NOD2 stimulation
indeed decreases phagocytosis and killing. By performing these
experiments in cells isolated form NOD2-deficient patients we
show that MDP in these cells did not influence phagocytosis and
killing. These data strengthen the conclusion that NOD2 nega-
tively influences phagocytosis and killing of Aspergillus and
supports the concept that genetic NOD2 deficiency could confer
protection against invasive aspergillosis by an increased capacity
of NOD2-deficient cells to control fungal burden in the host.

One of the crucial PRRs for phagocytosis of A. fumigatus is the
c-type lectin receptor dectin-1*>%3. On the one hand, when we
studied the expression of dectin-1 in the setting of Nod2 defi-
ciency or silencing we observed that when phagocytosis was
increased this correlated with increased dectin-1 expression. On
the other hand NOD2 stimulation with MDP decreased surface
dectin-1 expression. The observed correlation between increased
dectin-1 expression and increased phagocytosis and killing within
the setting of NOD2 deficiency, may argue for a role for dectin-1,
but does not exclude that other mechanisms are still playing a
role in the observed protection.

Although it has previously been shown that other fungi such as
Candida albicans are not recognized by NOD2*+%5, the fungal
cell wall component chitin/chitosan that is present in both
Aspergillus and Candida has been suggested to be a ligand for
NLRs'®46, Chitosan activates NLRP3 and thereby activates the
inflammasome and induces IL-1p production, whereas chitin did
not activate NLRP346, Chitin induces IL-10 dependent on TLRY,
mannose receptor and NOD2!8, These data suggest that NOD2
plays a role in the recognition of fungal molecules such as chitin.
However, a different study demonstrated that chitin-induced
IL-1Ra production in human PBMCs is independent of NOD2%.
In addition, chitin can synergize with the NOD2 ligand MDP to
augment IL-18 and TNF responses®’, similar to our current
observation that Aspergillus synergizes with MDP stimulation.
Although this underlines that chitin and possibly other fungal cell
wall molecules synergize with NOD2 signalling to augment
cytokine responses, further studies are required to identify the
PAMPs in Aspergillus that are recognized by NOD2. Moreover,
NOD2 may not be directly involved in recognizing Aspergillus,
but rather coordinate the responses that are induced by other
(membrane-bound) PRRs, for example, the orchestration of
phagosome composition. NOD2 synergizes with TLR signalling
to yield more potent inflammatory responses*®~>2. Selective
modulation of signals from PRRs that recognize Aspergillus is a
possible mechanism by which the NOD receptors regulate the
host response to A. fumigatus.

Collectively our data highlight a detrimental effect for NOD2
on antifungal host defence against A. fumigatus. This places
NOD?2 in a unique position in anti-Aspergillus host defence. It has
the capacity to increase phagocytosis and killing in a ROS

independent way. This could provide a rationale for treating
patients that are immunosuppressed, either due to primary
immunodeficiency such as chronic granulomatous disease that
lack ROS or in patients that receive corticosteroids that suppress
immune cells to produce ROS. Moreover, the effects of NOD2
deficiency are in sharp contrast with NOD1 deficiency. NOD1-
deficient cells show increased cytokine production in response to
Aspergillus. This might be beneficial, but could also be detri-
mental during the natural course of aspergillosis. Moreover,
the oxidative burst is significantly higher under NOD1 deficient
conditions and is decreased by NOD1 stimulation!’, whereas in
NOD2 we do not find an association with altered ROS produc-
tion. NOD1 and NOD2 are closely related and interact with each
other, therefore one would expect they behave similar in anti-
Aspergillus host defence, but here we demonstrate clear different
roles for NOD2 than the previous effects described for NOD1!7.
A potential explanation for the different phenotypes observed
with NOD1 and NOD2 deficiency is that Aspergillus PAMPs may
have different affinities for the two different receptors or that
different PAMPs bind and/or activate the receptors. Binding of
the receptors by different PAMPs could lead to the fact that both
receptors compete for the downstream adapter RICK, which was
previously proposed to explain differential regulation of inflam-
mation by NOD1 and NOD2 in arthritis>. An alternative
explanation for the different phenotypes observed with NOD1
and NOD2 is that one, or both, of these receptors, can, in addi-
tion to RICK, induces an alternative-signalling cascade. Of note, it
has previously been demonstrated that NOD2 can signal through
the intracellular adaptor CARD9>4, which has a strong associa-
tion with antifungal host response®>>°, It is tempting to speculate
that the detrimental effect of NOD2 may be due to sequestering
CARDY from other receptors requiring CARD9 as a signalling
adaptor, such as dectin-1°7, dectin-2°%. Further studies using
NOD1/NOD2, RICK, and NOD2/CARD9 knockout mice and co-
precipitations would be required to investigate how the molecular
pathways of NOD1 and NOD2 intertwine to mediate detrimental
effects on the antifungal host response against Aspergillus.

NOD?2 deficiency mediates protection against Aspergillus in
mice, and polymorphisms in NOD2 alter the susceptibility of
HSCT patients to develop aspergillosis. These effects are in the
context where NOD2 seems to play a role in the induction of
innate and adaptive cytokine responses against Aspergillus in
humans. The absence of NOD2, however, strongly correlates with
an enhancement of fungal killing and phagocytosis, which is
independent of ROS. This makes NOD2 an attractive therapeutic
target in the treatment of invasive aspergillosis.

Methods

Study design. A total of 310 consecutive haematological patients of European
descent undergoing allogeneic HSCT at Instituto Portugués de Oncologia, Porto,
and at the Hospital de Santa Maria, Lisbon, between 2010 and 2014, and respective
donors, were included in the genetic association study. The demo%raphic and
clinical characteristics of the patients were as previously described?® and are pre-
sented in Supplementary Table 2. Exclusion criteria were the development of fungal
infection other than that caused by Aspergillus spp., and pre-transplant fungal
infection. It should be noted that this cohort was previously successfully used for
identification of genes conferring increased susceptibility to aspergillosis?®. The
sample size was estimated to provide a power of 80% (1 — 8= 0.80) with a type I
error below 5% (a = 0.05) for genetic variants with minor allele frequencies
between 10 and 20% conferring a relative risk of 2.0.

For the functional genomics study, similarly, the cohort was previously
successfully used for identification of polymorphisms that lead to reduced cytokine
responses®”. The functional genomics cohort consisted of 200 healthy volunteers,
of which approximately 80 (variable per genotype) were included in the current
study. Individuals of which the genotype could not reliably be determined using
SNP assays, and individuals that were not assessed for cytokine production were
excluded from the analysis. The sample size of 80 healthy individuals was estimated
to provide a power of 70% (1 — $=0.70) with a type I error below 5% (« = 0.05)
for genetic variants with a minor allele frequencies of 20% conferring an odds ratio
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of 2.5. No patients were excluded in these studies. All cytokine and killing assays
were performed by a researcher blinded for the genotype.

Ethics statement. For the genetic association study, approval was obtained from
the Ethics Subcommittee for Life and Health Sciences of the University of Minho,
Portugal (125/014 and 014/015), the Ethics Committee for Health of the Instituto
Portugués de Oncologia—Porto, Portugal (26/015), the Ethics Committee of the
Lisbon Academic Medical Center, Portugal (632/014), and the National Com-
mission for the Protection of Data, Portugal (1950/015).

For the functional genomics study and patient studies, drawing of blood
samples from patients and healthy volunteers was approved by the local ethical
board at the Radboud University Nijmegen (Arnhem-Nijmegen Medical Ethical
Committee).

For assessment of BAL cytokine levels approval was obtained from the Ethics
Subcommittee for Life and Health Sciences of the University of Minho, Portugal
(126/014), and the Ethics Committee of the University Hospitals of Leuven,
Belgium.

All patients and healthy volunteers provided written informed consent.

Mice were cared for in accordance with Institut Pasteur guidelines, in
compliance with European animal welfare regulation. This study was approved by
the ethical committee for animal experimentation CETEA (Comité d’éthique en
experimentation animale, Project license number 2013-0020). Animal studies were
conducted under protocols approved by St. Jude Children’s Research Hospital
Committee on Use and Care of Animals (protocol no 482-100265-1-/13).

Healthy controls and NOD2 deficient patients. Venous blood samples from
healthy controls and patients were obtained and were analysed for polymorphisms
in NOD?2 gene (P268S rs2066842, G908R rs2066845, R702W rs2066844 and
1007finsC, 1s2066847). DNA was isolated from whole blood by using the isolation
Gentra Pure Gene Blood kit (Qiagen), according to the manufacturer’s protocol.
Gene fragments were amplified and genotyped using commercially available
TagMan SNP Genotyping Assays (Applied Biosystems) according to the manu-
facturer’s protocol on the StepOnePlus system (Applied Biosystems). Quality
control was performed by the incorporation of positive and negative controls and
duplication of random samples across different plates.

Nine patients with Crohn’s disease that were homozygous for the 1007finsC
polymorphism were included for studying NOD2 deficiency. Most patients
received anti-inflammatory therapy for treatment of their Crohn’s disease; Patient
1 Mesalazine 1dd 1000 mg, Patient 2 No immunomodulation, Patient 3
Adalimumab 1 x 2 weeks 40 mg sub cutaneous, Patient 4 mesalazine 3dd 1 g and
azathioprine 1dd 200 mg, Patient 5 infliximab every 8 weeks 300 mg iv, Patients
6-9 unknown.

Genotyping. DNA was isolated using the Gentra Pure Gene Blood kit (Qiagen), in
accordance with the manufacturer’s protocol. Genotyping was performed using
KASPar assays (LGC Genomics, Hertfordshire, UK) in an Applied Biosystems 7500
Fast Real-Time PCR system for the patient cohort. Mean call rate was >97% for all
genotyped SNPs. Quality control for the genotyping results was achieved with
negative controls, common and rare homozygous controls (whenever available),
and retesting of samples with indeterminate results. Details of the MAF of the
polymorphisms in our cohort are provided in Table 1 and linkage disequilibrium
for all genotyped SNPs is shown in Supplementary Table 1.

Aspergillus fumigatus strains. A clinical isolate of Aspergillus fumigatus V05-27
was used for all ex vivo and in vitro stimulations®®. Aspergillus was grown for

7 days at 37 °C on Sabouraud dextrose agar slants poured in T150 cell culture flasks
(Corning). Abundant conidia were produced under these conditions. To harvest
conidia phosphate-buffered saline (PBS) with 0.05% Tween 80 was poured on the
slants and the surface was gently scraped using a cell scraper. To remove hyphae
and debris, the conidial suspension was filtered through four layers of sterile gauze.
Conidia were counted using a Biirker counting chamber, stored at —20 °C or heat
inactivated for 30 min at 90 °C. A concentration of 1 x 107/mL was used in the
experiments unless otherwise indicated. To obtain hyphal fragments, a suspension
of 1x 107/mL conidia was made in RPMI1640. After 10 h of incubation at 37 °C,
the tubes were centrifuged at 1550 x g for 10 min, and the pellet, containing almost
exclusively hyphae, was washed twice in PBS and heat inactivated for 30 min at 90 °

Heat-inactivated Aspergillus conidia (1 x 107/mL) were FITC-labelled by
incubation with FITC at a final concentration of 0.1 mg/mL (SIGMA) in 0.05 M Na
carbonate buffer (pH 10.2) at 37 °C for 1 h. Unbound FITC was washed away by
centrifugation three times in PBS-0.1% Tween 20, and labelled conidia were
resuspended in RPMI1640, counted and adjusted to a concentration of (4 x 103/
mL)®L. For in vivo experiments the luciferase-expressing Aspergillus fumigatus 2/7/
1 strain was used??, this strain contains two genomic lucop, integrations under
control of the Aspergillus gpdA promotor that regulates stable luciferase
expression®?. The strain has a similar antifungal susceptibility as its parental
CBS144.85 strain and demonstrates no growth defects under various in vitro
cultivation conditions such as different temperatures and carbon sources®. In

corticosteroid immunosuppressed mouse models of aspergillosis®?, the 2/7/1 strain
demonstrated a similar virulence as observed for its parental strain CBS144.85304,

PBMC isolation and stimulation. Venous blood was drawn into 10 mL EDTA
tubes. Blood was diluted in PBS (1:1) and fractions were separated by Ficoll (Ficoll-
Paque Plus, GE healthcare, Zeist, The Netherlands) density gradient centrifugation
according to the protocol supplied by the manufacturer. Cells were washed twice
with PBS and resuspended in RPMI-1640" (RPMI1640 Dutch modification sup-
plemented with 50 ug/mL gentamycin, 2 mM L-glutamine and 1 mM pyruvate;
Gibco, Invitrogen, Breda, The Netherlands).

PBMCs were plated in 96-well round-bottom plates (Corning, NY, USA) at a
final concentration of 2.5 x 10° cells/mL and in a total volume of 200 L. The
individuals in the functional genomic cohort were stimulated with medium
(negative control) or live Aspergillus at a final concentration of 1 x 107/mL for 24 h
or HI A. fumigatus conidia for 7 days (to prevent outgrowth of the fungus
influencing the results). The NOD2-deficient patients were stimulated in the
presence of 10% serum with the culture medium, live A. fumigatus conidia
(1 x 107/mL), HI conidia (1 x 107/mL) or HI hyphae (derived from 1 x 107/mL
conidia). PBMCs in co-stimulation experiments were exposed to 10 pug/mL MDP
and subsequently stimulated with medium, HI conidia (1 x 107/mL). After
stimulation culture supernatants were collected and stored at —20 °C until cytokine
measurement.

Flow cytometry. Flow cytometry for Aspergillus-induced IL-17A™, IL-22", and
IENy™ T-cells was performed as described previously®. Following 7 day Asper-
gillus-stimulations, culture supernatants were removed and PBMCs were re-
stimulated 4-6 h with PMA (50 ng/mL; Sigma-Aldrich), ionomycin (1 mg/mL;
Sigma-Aldrich), and GolgiPlug (BD Biosciences) according to the protocols sup-
plied by the manufacturers. Cells were stained extracellular in a total volume of
50 uL using PE-Cy7-conjugated anti-CD4 monoclonal antibody (eBiosciences,
clone RM4-5, dilution 1:20). Subsequently, the cells were fixed and permeabilized
with Cytofix/Cytoperm solution (eBioscience) according to the protocol supplied
by the manufacturer. Following permeabilization the cells were stained intra-
cellularly with Alexa 647-conjugated anti-IL-17A monoclonal antibody (BD
Biosciences, Clone TC11-18H10, dilution 1:6), PE-conjugated anti-IL-22 mono-
clonal antibody (R&D Systems, Clone 142928, dilution 1:12), and FITC-conjugated
anti-IFNy monoclonal antibody (eBioscience, clone 4s.B3, dilution 1:300)
according to the protocols supplied by the manufacturer’s. The cells were measured
on an FC500 flow cytometer (Beckman Coulter) and the data were analysed using
CXP analysis software v2.2 (Beckman Coulter).

The surface dectin-1 expression on human MDMs was assessed following
stimulation of with MDP as described above. MDMs were stained in a final volume
of 50 uL with FITC-conjugated anti-human CD14 monoclonal antibody (BD; clone
TUK 4, dilution 1:20), KromeOrange-conjugated anti-human CD45 monoclonal
antibody (Beckman Coulter; clone J.33, dilution 1:10) and APC-conjugated anti-
human dectin-1 monoclonal antibody (R&D, clone 259931, dilution 1:10). CD14"
cells were gated within the population of CD45™ cells and subsequently, the Mean
fluorescence intensity (MFI) of Dectin-1 was assessed on the CD147/CD457 cells
(Supplementary Figure 4). The cells were measured on a Cytoflex flow cytometer
(Beckman Coulter) and the data were analysed using Kaluza software (Beckman
Coulter).

Aspergillus killing assays. Freshly isolated PBMCs (5 x 10°), human GM-CSF
monocyte-derived macrophages (2 x 10°) or murine BMDMs (2 x 10°) were
exposed to Aspergillus conidia (2 x 10°) in 96 well plates a final volume of 200 pL.
After 24 h at 37 °C, the cells were washed in water and plated in serial dilution on
Sabouraud agar plates. CFUs were counted after 24 h at 37 °C.

Phagocytosis assays. Human CD14" monocytes, human MDMs, or BMDMs
were plated in 24 flat bottom plates at 5 x 10° cells/well. Cells were allowed to
phagocytose 5 x 10® (MOI 1:10) heat inactivated FITC-labelled conidia for 4 h.
Subsequently the fluorescence signal of extracellular non-phagocytosed conidia was
quenched using 0.2% trypan blue. The cells were measured on a Cytoflex flow
cytometer (Beckman Coulter) and the data were analysed using Kaluza software
(Beckman Coulter). The monocytes that phagocytosed one or more conidia were
enumerated by their positivity for the FITC signal, and could be divided into a
FITC negative (monocytes that did not engulf conidia) and a FITC positive
(monocytes that engulfed conidia) population. Phagocytosis efficiency was assessed
as the mean fluorescence intensity of FITC™ macrophage population (Supple-
mentary Figure 5).

ROS induction. The induction of ROS was measured by oxidation luminol
(5-amino-2,3,dihydro-1,4-phtalazinedione). PBMCs (5 x 10%), murine BMDMs
(1% 10°), human MDMs (1 x 10°) were resuspended in HBSS and put in dark
96-well plates. Cells were exposed to HBSS, A. fumigatus germs (1 x 107/mL;
PBMCs only) or Zymosan (150 ug/mL). Immediately 20 uL of 1 mM luminol was
added. Chemiluminescence was measured in BioTek Synergy HTreader at

37°C for every min during 1 h.
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Quantitative reverse transcriptase PCR for CLEC7A expression. RNA was
isolated according to the protocol supplied with the TRIzol reagent. Isolated
mRNA (1 pg) was reverse transcribed into cDNA using the iScript cDNA synthesis
kit (BIORAD). Quantitative real-time PCR (qPCR) was performed using Power
SYBR Green PCR master mix (Applied Biosystems) and following primers (all
manufactured by Biolegio) for human samples hNOD2 Fwd 5'-CCCTGCAGC
TGGACTACAACT-3' and Rev 5'-AGATGCCTCGGTCTGAGATATTG-3,
hGAPDH Fwd 5'-AGGGGAGATTCAGTGTGGTG-3’ and Rev 5'-CGACCACTT
TGTCAAGCTCA-3’ hCLEC7A Fwd 5'-ACAATGCTGGCAACTGGGCT-3" and
Rev 5'-GCCGAGAAAGGCCTATCCAAAA-3' and the following primer sets form
mouse samples mClec7a Fwd 5-AGGTTTTTCTCAGCCTTGC

CTTC-3’ and Rev 5-GGGAGCAGTGTCTCTTACTTCC-3', mGapdh Fwd 5'-AG
GTCGGTGTGAACGGATTTG-3" and Rev 5-TGTAGACCATGTAGTTGAGGT
CA-3'. PCR was performed using an Applied Biosystems StepONE PCR system
using PCR conditions 2 min 50 °C, 10 min 95 °C followed by 40 cycles at 95 °C for
15 s and 60 °C for 1 min. The RNA genes of interest were corrected for differences
in loading concentration using the signal of the housekeeping protein GAPDH.

NOD2 silencing. Freshly isolated PBMCs were differentiated to macrophages using
6-day differentiation in 10% human serum supplemented with 5 ng/mL GM-CSF
(R&D systems). After differentiation (1 x 10°) macrophages were seeded in 96 well
plates and left for 2 h at 37 °C to subsequently transfect them with 25 1M NOD2
targeting siRNA (on target) or scrambled (non-target) control siRNA (smart pool,
Thermo Scientific) for 24 h at 37 °C (Dharmafect, Thermo Scientific). Subse-
quently, the culture medium was refreshed and cells were used for killing and
phagocytosis assays and PCR analysis.

In vivo experiments. Mice for in vivo experiments were supplied by the breeding
centre R. Janvier (Le Genest Saint-Isle, France). All mice were housed under
specific pathogen-free conditions in IVC cages, and fed standard chow and water
ad libitum. For the survival experiment in an immunosuppressed background
C57BL/6 wild-type (6male/7female), and C57BL/6 Nod2~'~ (7male/2female) mice
(28 to 31 g, 10 weeks old) were used. An estimated power of 80% (1 — 8= 0.80)
with a type I error below 5% (a = 0.05) for a relative risk of 1.8 was estimated based
on a median survival of 4 days in the control group. Mice were separated between
genotypes into cages without further randomization and immunosuppressed at day
4 and day 1 before infection by intraperitoneal injection of 200 pL cyclopho-
sphamide (Sigma Aldrich) at 4 mg/mL. At the day of infection, mice were anaes-
thetized by intramuscular injection (150 uL) of ketamine (10 mg/mL) and xylazine
(10 mg/mL) hair was shaved from the ventral lung area and subsequently, mice
were inoculated intranasally with 5 x 10* luciferase expressing A. fumigatus 2/7/1
conidia® in 25 uL PBS.

In all experiments, survival and weight was monitored in an unblinded fashion
during the course of infection.

For histological assessment female C57BL/6 wild-type and C57BL/6 Nod2~/~
mice (19 to 22 g, 8 weeks old) were used. With 8 mice per group in two separate
experiments a power was estimated of 80% (1 — 8= 0.80) with a type I error below
5% (a=0.05) for a variance of 5%. They received similar immunosuppression
regimen and were similarly infected as the mice for survival. Weight and
bioluminescence were monitored daily during the course of infection. At day 3 the
mice were euthanized.

Bioluminescence imaging. Bioluminescence imaging was acquired at day 1 post-
infection (pi) and was continued on days 2, 3, 4, 6, and 8 pi. Images were acquired
using an IVIS 100 system (PerkinElmer) according to the manufacturer’s
instructions. Analysis and acquisition were performed using Living Image software,
version 2.6 (Xenogen). A volume of 100 pL of PBS containing 3.33 mg
D-luciferin was injected intraperitoneally before each measurement. During image
acquisition, mice were anesthetized using a constant flow of 2.5% isoflurane mixed
with oxygen by means of an XGI-8 gas anaesthesia system (Xenogen), which
allowed control over the duration of anaesthesia. Images were acquired for 5 min®2.
Quantification of photons per second emitted by each organ was performed by
defining regions of interest corresponding to the respective organs of interest (sinus
and thorax region), using the Xenogen software Living Image, version 3.0.

Aspergillus PCR. Lung homogenates were obtained following disruption in saline
using the Retsch Mixer Mill 301 homogenizer. The fungal burden was determined
by amplification of Aspergillus ITS2 regions. Briefly, Homogenized tissue samples
were used for DNA isolation by using the automated MagNA Pure system and the
MagNA Pure LC Total Nucleic Acid Isolation Kit according to manufacturers
protocol (Roche Applied Science). PhHV was added to all samples as an internal
isolation control. The concentration of total isolated DNA was measured by using
the Quantus Fluorometer (Promega). Aspergillus loads were determined by real-
time PCR using the LC480 instrument and the probes master kit (Roche Applied
Science). Thermocycling conditions were as follows: 37 °C for 10 min, 95 °C for 10
min, and 50 cycles: 95 °C for 155, and 60 °C for 45s. The rDNA ITS2 region of
Aspergillus fumigatus was detected by using primers 5'-GCGTCATTGCTGCCC
TCAAGC-3', 5'-ATATGCTTAAGTTCAGCGGGT-3’ and probe Cy5-TCCTCGA
GCGTATGGGGCTT-BBQ. The PhHV isolation control was detected by using

primers 5'-GGGCGAATCACAGATTGAATC-3', 5'-GCGGTTCCAAACGTAC
CAA-3' and probe LC610-TTTTTATGTGTCCGCCACCATCTGGATC-BBQ. For
the ITS2 detection, a two-fold dilution series of the cloned PCR product was
included to calculate the number of copies per reaction.

Histology. Sinuses and lungs were removed and immediately fixed in 10% neutral-
buffered formalin. After fixation, sinuses were decalcified for 1 month, using a
chelating agent (ethylenediaminetetracetic acid—EDTA) in order to allow routine
processing of paraffin while preserving high-quality morphology. Sinus and lung
samples were then embedded in paraffin and cut into 4 um thick sections. Serial
sections were stained with haematoxylin and eosin (HE) for assessment histological
lesions, Grocott’s methenamine silver for fungal detection.

For morphometric analysis, fields at a magnification of x50, covering the entire
lung sections of WT and Nod2~/~ mice at day 2 post infection were selected and
analysed using Image] software (http://rsbweb.nih.gov/ij/). We used the software to
count the number of lesion foci per lung section, considering ischaemic necrosis
foci for wild-type mice and small macrophage infiltrates for Nod2~/~ mice since
ischaemic necrosis was not observed in these mice. Using the software we also
measured the size of ischaemic necrosis and macrophage infiltrate foci. Results
were expressed as the number and surface of lung lesions, relative to the total lung
sections.

To detect the presence of macrophages within the lung tissue,
immunohistochemistry analysis was performed using a rat anti-mouse F4/80
monoclonal antibody (AbD Serotec, MCA497G, clone CI:A3-1, diluted 1:400), in
sterile phosphate-buffered saline and incubated overnight at 4 °C. The primary
antibody was visualized with the N-Histofine rat (Microm) according to the
manufacturer’s protocol. The colour was developed with 3-Amino-9-
EthylCarbazole (AEC chromogen, Sigma). The sections were then counterstained
with Meyer’s haematoxylin and cover-slipped for microscopic observation.

Cytokine measurements. The levels of cytokines in human BAL samples

were quantified using the Human Premixed Multi-Analyte Kit (R&D Systems,
MN, USA). The cytokine levels in culture supernatants of human PBMCs

were measured using commercially available ELISA assays according to the pro-
tocol supplied by the manufacturer. IL-1B, TNF, IL-6, IL-17A, and IL-22 assays
were from R&D systems and IFNy was from Sanquin (Amsterdam, The Nether-
lands). Mouse IL-1p3, TNF, IL-6, KC, IL-17A, IL-22, and IFNy in splenocyte
stimulations were measured using the Luminex multiplex platform (Millipore,
Billerica, MA).

Statistical analysis. For the genetic association study, the probability of IA
according to NOD2 genotypes was determined using the cumulative incidence
method and compared using Gray’s test®®. Cumulative incidences of infection at
24 months were computed with the cmprsk package for R version 2.10.1%7, with
censoring of data at the date of last follow-up visit and relapse and death as
competing events. The clinical and genetic variables achieving a p-value <0.15 in
the univariate analysis were entered one by one in a pairwise model together and
kept in the final model if they remained significant (p < 0.05). Multivariate analysis
was performed using the sub-distribution regression model of Fine and Gray with
the cmprsk package for R,

Data are presented as scatterplots representing individual data points and a line
indicating the median value or as graphs +SEM. Data from functional genomic
experiments, in vitro experiments and in vivo experiments was subjected to
D’Agostino & Pearson omnibus normality test and was not normally distributed.
No samples/animals were excluded from analysis in the in vivo experiments. For
in vitro experiments all data points are shown without exclusion. In the functional
genomic experiments only healthy individuals whose genotype could not accurately
be determined were excluded from the studies. Unless otherwise indicated the
Mann-Whitney U test was used to determine statistical significant differences
between experimental groups and for paired analysis such as with MDP
stimulation or siRNA treatment the paired Wilcoxon signed-rank test was used
with *p <0.05, **p <0.01, **p <0.001, and ****p <0.0001. All data were analysed
using GraphPad Prism v6.0.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information Files. All
relevant data are available by request from the authors, with the restriction of data
that would compromise patient confidentiality.
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