11 research outputs found

    Integrative analysis of therapy resistance and transcriptomic profiling data in glioblastoma cells identifies sensitization vulnerabilities for combined modality radiochemotherapy.

    No full text
    Background: Inherent resistance to radio/chemotherapy is one of the major reasons for early recurrence, treatment failure, and dismal prognosis of glioblastoma. Thus, the identification of resistance driving regulators as prognostic and/or predictive markers as well as potential vulnerabilities for combined modality treatment approaches is of pivotal importance. Methods: We performed an integrative analysis of treatment resistance and DNA damage response regulator expression in a panel of human glioblastoma cell lines. mRNA expression levels of 38 DNA damage response regulators were analyzed by qRT-PCR. Inherent resistance to radiotherapy (single-shot and fractionated mode) and/or temozolomide treatment was assessed by clonogenic survival assays. Resistance scores were extracted by dimensionality reduction and subjected to correlation analyses with the mRNA expression data. Top-hit candidates with positive correlation coefficients were validated by pharmacological inhibition in clonogenic survival assays and DNA repair analyses via residual γH2AX/53BP1-foci staining. Results: Inherent resistance to single-shot and similarly also to fractionated radiotherapy showed strong positive correlations with mRNA expression levels of known vulnerabilities of GBM, including PARP1, NBN, and BLM, as well as ATR and LIG4—two so far underestimated targets. Inhibition of ATR by AZD-6738 resulted in robust and dose-dependent radiosensitization of glioblastoma cells, whereas LIG4 inhibition by L189 had no noticeable impact. Resistance against temozolomide showed strong positive correlation with mRNA expression levels of MGMT as to be expected. Interestingly, it also correlated with mRNA expression levels of ATM, suggesting a potential role of ATM in the context of temozolomide resistance in glioblastoma cells. ATM inhibition exhibited slight sensitization effects towards temozolomide treatment in MGMT low expressing glioblastoma cells, thus encouraging further characterization. Conclusions: Here, we describe a systematic approach integrating clonogenic survival data with mRNA expression data of DNA damage response regulators in human glioblastoma cell lines to identify markers of inherent therapy resistance and potential vulnerabilities for targeted sensitization. Our results provide proof-of-concept for the feasibility of this approach, including its limitations. We consider this strategy to be adaptable to other cancer entities as well as other molecular data qualities, and its upscaling potential in terms of model systems and observational data levels deserves further investigation

    Supplementary Material for: Loss of Chromosome 18 in Neuroendocrine Tumors of the Small Intestine: The Enigma Remains

    No full text
    <p><b><i>Background/Aims:</i></b> Neuroendocrine tumors of the small intestine (SI-NETs) exhibit an increasing incidence and high mortality rate. Until now, no fundamental molecular event has been linked to the tumorigenesis and progression of these tumors. Only the loss of chromosome 18 (Chr18) has been shown in up to two thirds of SI-NETs, whereby the significance of this alteration is still not understood. We therefore performed the first comprehensive study to identify Chr18-related events at the genetic, epigenetic and gene/protein expression levels. <b><i>Methods:</i></b> We did expression analysis of all seven putative Chr18-related tumor suppressors by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry. Next-generation exome sequencing and SNP array analysis were performed with five SI-NETs with (partial) loss of Chr18. Finally, we analyzed all microRNAs (miRNAs) located on Chr18 by qRT-PCR, comparing Chr18+/- and Chr18+/+ SI-NETs. <b><i>Results:</i></b> Only DCC (deleted in colorectal cancer) revealed loss of/greatly reduced expression in 6/21 cases (29%). No relevant loss of SMAD2, SMAD4, elongin A3 and CABLES was detected. PMAIP1 and maspin were absent at the protein level. Next-generation sequencing did not reveal relevant recurrent somatic mutations on Chr18 either in an exploratory cohort of five SI-NETs, or in a validation cohort (n = 30). SNP array analysis showed no additional losses. The quantitative analysis of all 27 Chr18-related miRNAs revealed no difference in expression between Chr18+/- and Chr18+/+ SI-NETs. <b><i>Conclusion:</i></b> DCC seems to be the only Chr18-related tumor suppressor affected by the monoallelic loss of Chr18 resulting in a loss of DCC protein expression in one third of SI-NETs. No additional genetic or epigenetic alterations were present on Chr18.</p

    Comparison of Multivendor Single-Voxel MR Spectroscopy Data Acquired in Healthy Brain at 26 Sites

    Get PDF
    Background: The hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose: To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods: An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results: In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4–5.0 Hz), signal-to-noise ratio (range, 174–289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion: Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols
    corecore