786 research outputs found
Beneficial effects of running and milk protein supplements on Sirtuins and risk factors of metabolic disorders in rats with low aerobic capacity
Background Physical activity and dietary intake of dairy products are associated with improved metabolic health. Dairy products are rich with branched chain amino acids that are essential for energy production. To gain insight into the mechanisms underlying the benefit of the sub-chronic effects of running and intake of milk protein supplements, we studied Low Capacity Runner rats (LCR), a rodent exercise model with risk for metabolic disorders. We especially focused on the role of Sirtuins, energy level dependent proteins that affect many cellular metabolic processes. Methods Forty-seven adult LCR female rats sedentary or running voluntarily in wheels were fed normal chow and given supplements of either whey or milk protein drink (PD)-supplemented water, or water only for 21 weeks. Physiological responses were measured in vivo. Blood lipids were determined from serum. Mitochondrial markers and Sirtuins (Sirt1-7) including downstream targets were measured in plantaris muscle by western blotting. Results For the first 10 weeks whey-drinking rats ran about 50% less compared to other groups; still, in all runners glucose tolerance improved and triglycerides decreased. Generally, running induced a âŒsix-fold increase in running capacity and a âŒ8% decrease in % body fat. Together with running, protein supplements increased the relative lean mass of the total body weight by âŒ11%. In comparison with sedentary controls, running and whey increased HDL (21%) and whey, with or without running, lowered LDL (â34%). Running increased mitochondrial biogenesis and Sirtuins 3 and 4. When combined with exercise, both whey and milk protein drink induced about a 4-fold increase in Sirt3, compared to runners drinking water only, and about a 2-fold increase compared to the respective sedentary group. Protein supplements, with or without running, enhanced the phosphorylation level of the acetyl-coA-carboxylase, suggesting increased fat oxidation. Both supplemented diets increased Sirt5 and Sirt7 without an additional effect from exercise. Running diminished and PD supplement increased Sirt6. Conclusion We demonstrate in rats new sub-chronic effects of milk proteins on metabolism that involve Sirtuins and their downstream targets in skeletal muscle. The results show that running and milk proteins act on reducing the risk factors of metabolic disorders and suggest that the underlying mechanisms may involve Sirtuins. Notably, we found that milk protein supplements have some favorable effects on metabolism even without running.Peer reviewe
Optimum electrode configurations for fast ion separation in microfabricated surface ion traps
For many quantum information implementations with trapped ions, effective
shuttling operations are important. Here we discuss the efficient separation
and recombination of ions in surface ion trap geometries. The maximum speed of
separation and recombination of trapped ions for adiabatic shuttling operations
depends on the secular frequencies the trapped ion experiences in the process.
Higher secular frequencies during the transportation processes can be achieved
by optimising trap geometries. We show how two different arrangements of
segmented static potential electrodes in surface ion traps can be optimised for
fast ion separation or recombination processes. We also solve the equations of
motion for the ion dynamics during the separation process and illustrate
important considerations that need to be taken into account to make the process
adiabatic
The Interspersed Spin Boson Lattice Model
We describe a family of lattice models that support a new class of quantum
magnetism characterized by correlated spin and bosonic ordering [Phys. Rev.
Lett. 112, 180405 (2014)]. We explore the full phase diagram of the model using
Matrix-Product-State methods. Guided by these numerical results, we describe a
modified variational ansatz to improve our analytic description of the
groundstate at low boson frequencies. Additionally, we introduce an
experimental protocol capable of inferring the low-energy excitations of the
system by means of Fano scattering spectroscopy. Finally, we discuss the
implementation and characterization of this model with current circuit-QED
technology.Comment: Submitted to EPJ ST issue on "Novel Quantum Phases and Mesoscopic
Physics in Quantum Gases
Dynamic deformation of metastable austenitic stainless steels at the nanometric length scale
Cyclic indentation was used to evaluate the dynamic deformation on metastable steels, particularly in an austenitic stainless steel, AISI 301LN. In this work, cyclic nanoindentation experiments were carried out and the obtained loading-unloading (or P-h) curves were analyzed in order to get a deeper knowledge on the time-dependent behavior, as well as the main deformation mechanisms. It was found that the cyclic P-h curves present a softening effect due to several repeatable features (pop-in events, ratcheting effect, etc.) mainly related to dynamic deformation. Also, observation by transmission electron microscopy highlighted that dislocation pile-up is the main responsible of the secondary pop-ins produced after certain cycles.Peer ReviewedPostprint (author's final draft
Production and Decay of D_1(2420)^0 and D_2^*(2460)^0
We have investigated and final states and
observed the two established charmed mesons, the with mass
MeV/c and width MeV/c and
the with mass MeV/c and width
MeV/c. Properties of these final states, including
their decay angular distributions and spin-parity assignments, have been
studied. We identify these two mesons as the doublet predicted
by HQET. We also obtain constraints on {\footnotesize } as a function of the cosine of the relative phase of the two
amplitudes in the decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by
sending mail to: [email protected]
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
Observation of the Charmed Baryon Decays to , , and
We have observed two new decay modes of the charmed baryon into
and using data collected with the
CLEO II detector. We also present the first measurement of the branching
fraction for the previously observed decay mode . The branching fractions for these three modes relative to
are measured to be , , and , respectively.Comment: 12 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
Leptonic and Semileptonic Decays of Charm and Bottom Hadrons
We review the experimental measurements and theoretical descriptions of
leptonic and semileptonic decays of particles containing a single heavy quark,
either charm or bottom. Measurements of bottom semileptonic decays are used to
determine the magnitudes of two fundamental parameters of the standard model,
the Cabibbo-Kobayashi-Maskawa matrix elements and . These
parameters are connected with the physics of quark flavor and mass, and they
have important implications for the breakdown of CP symmetry. To extract
precise values of and from measurements, however,
requires a good understanding of the decay dynamics. Measurements of both charm
and bottom decay distributions provide information on the interactions
governing these processes. The underlying weak transition in each case is
relatively simple, but the strong interactions that bind the quarks into
hadrons introduce complications. We also discuss new theoretical approaches,
especially heavy-quark effective theory and lattice QCD, which are providing
insights and predictions now being tested by experiment. An international
effort at many laboratories will rapidly advance knowledge of this physics
during the next decade.Comment: This review article will be published in Reviews of Modern Physics in
the fall, 1995. This file contains only the abstract and the table of
contents. The full 168-page document including 47 figures is available at
http://charm.physics.ucsb.edu/papers/slrevtex.p
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
- âŠ