106 research outputs found

    Widespread Selection Across Coding and Noncoding DNA in the Pea Aphid Genome

    Get PDF
    Genome-wide patterns of diversity and selection are critical measures for understanding how evolution has shaped the genome. Yet, these population genomic estimates are available for only a limited number of model organisms. Here we focus on the population genomics of the pea aphid (Acyrthosiphon pisum). The pea aphid is an emerging model system that exhibits a range of intriguing biological traits not present in classic model systems. We performed low-coverage genome resequencing of 21 clonal pea aphid lines collected from alfalfa host plants in North America to characterize genome-wide patterns of diversity and selection. We observed an excess of low-frequency polymorphisms throughout coding and noncoding DNA, which we suggest is the result of a founding event and subsequent population expansion in North America. Most gene regions showed lower levels of Tajima’s D than synonymous sites, suggesting that the majority of the genome is not evolving neutrally but rather exhibits significant constraint. Furthermore, we used the pea aphid’s unique manner of X-chromosome inheritance to assign genomic scaffolds to either autosomes or the X chromosome. Comparing autosomal vs. X-linked sequence variation, we discovered that autosomal genes show an excess of low frequency variants indicating that purifying selection acts more efficiently on the X chromosome. Overall, our results provide a critical first step in characterizing the genetic diversity and evolutionary pressures on an aphid genome

    Three Highly Conserved Proteins Catalyze the Conversion of UDP-N-Acetyl-D-Glucosamine to Precursors for the Biosynthesis of O antigen in Pseudomonas aeruginosa O11 and Capsule in Staphylococcus aureus Type 5 - Implications for the UDP-N-Acetyl-L-Fucosamine Biosynthetic Pathway*

    Get PDF
    N-Acetyl-l-fucosamine is a constituent of surface polysaccharide structures of Pseudomonas aeruginosa and Staphylococcus aureus. The three P. aeruginosa enzymes WbjB, WbjC, and WbjD, as well as the S. aureus homologs Cap5E, Cap5F, and Cap5G, involved in the biosynthesis of N-acetyl-l-fucosamine have been overexpressed and purified to near homogeneity. Capillary electrophoresis (CE), mass spectroscopy (MS), and nuclear magnetic resonance spectroscopy have been used to elucidate the biosynthesis pathway, which proceeds in five reaction steps. WbjB/Cap5E catalyzed 4,6-dehydration of UDP-N-acetyl-d-glucosamine and 3- and 5-epimerization to yield a mixture of three keto-deoxy-sugars. The third intermediate compound was subsequently reduced at C-4 to UDP-2-acetamido-2,6-dideoxy-l-talose by WbjC/Cap5F. Incubation of UDP-2-acetamido-2,6-dideoxy-l-talose (UDP-TalNAc) with WbjD/Cap5G resulted in a new peak separable by CE that demonstrated identical mass and fragmentation patterns by CE-MS/MS to UDP-TalNAc. These results are consistent with WbjD/Cap5G-mediated 2-epimerization of UDP-TalNAc to UDP-FucNAc. A nonpolar gene knockout of wbjB, the first of the genes associated with this pathway, was constructed in P. aeruginosa serotype O11 strain PA103. The corresponding mutant produced rough lipopolysaccharide devoid of B-band O antigen. This lipopolysaccharide deficiency could be complemented with P. aeruginosa wbjB or with the S. aureus homolog cap5E. Insertional inactivation of either the cap5G or cap5F genes abolished capsule polysaccharide production in the S. aureus strain Newman. Providing the appropriate gene in trans, thereby complementing these mutants, fully restored the capsular polysaccharide phenotype

    Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11.

    Get PDF
    Abstract UDP-N-acetyl-l-fucosamine is a precursor to l-fucosamine in the lipopolysaccharide of Pseudomonas aeruginosa serotype O11 and the capsule of Staphylococcus aureus type 5. We have demonstrated previously the involvement of three enzymes, WbjB, WbjC, and WbjD, in the biosynthesis of UDP-2-acetamido-2,6-dideoxy-l-galactose or UDP-N-acetyl-l-fucosamine (UDP-l-FucNAc). An intermediate compound from the coupled-reaction of WbjB-WbjC with the initial substrate UDP-2-acetamido-2-deoxy-α-d-glucose or UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) was purified, and the structure was determined by NMR spectroscopy to be UDP-2-acetamido-2,6-dideoxy-l-talose (UDP-l-PneNAc). WbjD could then convert this intermediate into a new product with the same mass, consistent with a C-2 epimerization reaction. Those results led us to propose a pathway for the biosynthesis of UDP-l-FucNAc; however, the exact enzymatic activity of each of these proteins has not been defined. Here, we describe a fast protein liquid chromatography (FPLC)-based anion-exchange procedure, which allowed the separation and purification of the products of C-2 epimerization due to WbjD. Also, the application of a cryogenically cooled probe in NMR spectrometry offers the greatest sensitivity for determining the structures of minute quantities of materials, allowing the identification of the final product of the pathway. Our results showed that WbjB is bifunctional, catalyzing firstly C-4, C-6 dehydration and secondly C-5 epimerization in the reaction with the substrate UDP-d-GlcNAc, producing two intermediates. WbjC is also bifunctional, catalyzing C-3 epimerization of the second intermediate followed by reduction at C-4. The FPLC-based procedure provided good resolution of the final product of WbjD reaction from its epimer/substrate UDP-l-PneNAc, and the use of the cryogenically cooled probe in NMR revealed unequivocally that the final product is UDP-l-FucNAc

    Parameter identification of the STICS crop model, using an accelerated formal MCMC approach

    Full text link
    This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L.) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modellingPeer reviewe

    Type III collagen modulates fracture callus bone formation and early remodeling

    Full text link
    Type III collagen (Col3) has been proposed to play a key role in tissue repair based upon its temporospatial expression during the healing process of many tissues, including bone. Given our previous finding that Col3 regulates the quality of cutaneous repair, as well as our recent data supporting its role in regulating osteoblast differentiation and trabecular bone quantity, we hypothesized that mice with diminished Col3 expression would exhibit altered long‐bone fracture healing. To determine the role of Col3 in bone repair, young adult wild‐type (Col3+/+) and haploinsufficent (Col3+/−) mice underwent bilateral tibial fractures. Healing was assessed 7, 14, 21, and 28 days following fracture utilizing microcomputed tomography (microCT), immunohistochemistry, and histomorphometry. MicroCT analysis revealed a small but significant increase in bone volume fraction in Col3+/− mice at day 21. However, histological analysis revealed that Col3+/− mice have less bone within the callus at days 21 and 28, which is consistent with the established role for Col3 in osteogenesis. Finally, a reduction in fracture callus osteoclastic activity in Col3+/− mice suggests Col3 also modulates callus remodeling. Although Col3 haploinsufficiency affected biological aspects of bone repair, it did not affect the regain of mechanical function in the young mice that were evaluated in this study. These findings provide evidence for a modulatory role for Col3 in fracture repair and support further investigations into its role in impaired bone healing. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:675–684, 2015.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111249/1/jor22838.pd

    Targeted Metabolomics Analysis of Campylobacter coli VC167 Reveals Legionaminic Acid Derivatives as Novel Flagellar Glycans

    Get PDF
    Glycosylation of Campylobacter flagellin is required for the biogenesis of a functional flagella filament. Recently, we used a targeted metabolomics approach using mass spectrometry and NMR to identify changes in the metabolic profile of wild type and mutants in the flagellar glycosylation locus, characterize novel metabolites, and assign function to genes to define the pseudaminic acid biosynthetic pathway in Campylobacter jejuni 81-176 (McNally, D. J., Hui, J. P., Aubry, A. J., Mui, K. K., Guerry, P., Brisson, J. R., Logan, S. M., and Soo, E. C. (2006) J. Biol. Chem. 281, 18489-18498). In this study, we use a similar approach to further define the glycome and metabolomic complement of nucleotide-activated sugars in Campylobacter coli VC167. Herein we demonstrate that, in addition to CMP-pseudaminic acid, C. coli VC167 also produces two structurally distinct nucleotide-activated nonulosonate sugars that were observed as negative ions at m/z 637 and m/z 651 (CMP-315 and CMP-329). Hydrophilic interaction liquid chromatography-mass spectrometry yielded suitable amounts of the pure sugar nucleotides for NMR spectroscopy using a cold probe. Structural analysis in conjunction with molecular modeling identified the sugar moieties as acetamidino and N-methylacetimidoyl derivatives of legionaminic acid (Leg5Am7Ac and Leg5AmNMe7Ac). Targeted metabolomic analyses of isogenic mutants established a role for the ptmA-F genes and defined two new ptm genes in this locus as legionaminic acid biosynthetic enzymes. This is the first report of legionaminic acid in Campylobacter sp. and the first report of legionaminic acid derivatives as modifications on a protein

    Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways. (Résumé d'auteur

    Tick-, Mosquito-, and Rodent-Borne Parasite Sampling Designs for the National Ecological Observatory Network [Special Feature: NEON Design]

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways

    Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-pollinating Sycophaginae (Hymenoptera, Chalcidoidea) form small communities within <it>Urostigma </it>and <it>Sycomorus </it>fig trees. The species show differences in galling habits and exhibit apterous, winged or dimorphic males. The large gall inducers oviposit early in syconium development and lay few eggs; the small gall inducers lay more eggs soon after pollination; the ostiolar gall-inducers enter the syconium to oviposit and the cleptoparasites oviposit in galls induced by other fig wasps. The systematics of the group remains unclear and only one phylogeny based on limited sampling has been published to date. Here we present an expanded phylogeny for sycophagine fig wasps including about 1.5 times the number of described species. We sequenced mitochondrial and nuclear markers (4.2 kb) on 73 species and 145 individuals and conducted maximum likelihood and Bayesian phylogenetic analyses. We then used this phylogeny to reconstruct the evolution of Sycophaginae life-history strategies and test if the presence of winged males and small brood size may be correlated.</p> <p>Results</p> <p>The resulting trees are well resolved and strongly supported. With the exception of <it>Apocrytophagus</it>, which is paraphyletic with respect to <it>Sycophaga</it>, all genera are monophyletic. The Sycophaginae are divided into three clades: (i) <it>Eukoebelea</it>; (ii) <it>Pseudidarnes</it>, <it>Anidarnes </it>and <it>Conidarnes </it>and (iii) <it>Apocryptophagus</it>, <it>Sycophaga </it>and <it>Idarnes</it>. The ancestral states for galling habits and male morphology remain ambiguous and our reconstructions show that the two traits are evolutionary labile.</p> <p>Conclusions</p> <p>The three main clades could be considered as tribes and we list some morphological characters that define them. The same biologies re-evolved several times independently, which make Sycophaginae an interesting model to test predictions on what factors will canalize the evolution of a particular biology. The ostiolar gall-inducers are the only monophyletic group. In 15 Myr, they evolved several morphological adaptations to enter the syconia that make them strongly divergent from their sister taxa. Sycophaginae appears to be another example where sexual selection on male mating opportunities favored winged males in species with small broods and wingless males in species with large broods. However, some species are exceptional in that they lay few eggs but exhibit apterous males, which we hypothesize could be due to other selective pressures selecting against the re-appearance of winged morphs.</p
    corecore