138 research outputs found

    Primers for Castilleja and their Utility Across Orobanchaceae: I. Chloroplast Primers

    Get PDF
    Premise of the study: Chloroplast primers were developed from genomic data for the taxonomically challenging genus Castilleja. We further tested the broader utility of these primers across Orobanchaceae, identifying a core set of chloroplast primers amplifying across the clade.Methods and Results: Using a combination of three low-coverage Castilleja genomes and sequence data from 12 Castilleja plastomes, 76 primer combinations were specifically designed and tested for Castilleja. The primers targeted the most variable portions of the plastome and were validated for their applicability across the clade. Of these, 38 primer combinations were subsequently evaluated in silico and then validated across other major clades in Orobanchaceae.Conclusions: These results demonstrate the utility of these primers, not only across Castilleja, but for other clades in Orobanchaceae— particularly hemiparasitic lineages—and will contribute to future phylogenetic studies of this important clade of parasitic plants

    Cost-effective building renovation strategies at the district level combining energy efficiency & renewables – investigation based on parametric calculations with generic districts

    Get PDF
    Informe generado en el marco del Energy in Buildings and Communities Programme de la International Energy AgencyThis report aims to study cost-effective strategies to combine energy efficiency measures and renewable energy use in building renovation at the district level and to investigate factors influencing the choice of a cost-effective strategy. This is done through generic district assessments, where hypothetical, “generic” districts are generated to model typical conditions in various European countries. For the generic districts, relevant variables were defined to carry out parametric assessments, applying and testing the methodology developed in IEA EBC Annex 75. The generic districts were generated and selected based on the typical conditions in each country, and the hypothetical nature of the assessment allowed for studying different starting conditions and renovation measures. It is, in particular, investigated to what extent there are synergies and trade-offs for combining energy efficiency measures and renewable energy measure

    Boreal forest floor greenhouse gas emissions across a Pleurozium schreberi-dominated, wildfire-disturbed chronosequence

    Get PDF
    The boreal forest is a globally critical biome for carbon cycling. Its forests are shaped by wildfire events that affect ecosystem properties and climate feedbacks including greenhouse gas (GHG) emissions. Improved understanding of boreal forest floor processes is needed to predict the impacts of anticipated increases in fire frequency, severity, and extent. In this study, we examined relationships between time since last wildfire (TSF), forest floor soil properties, and GHG emissions (CO2, CH4, N2O) along a Pleurozium schreberi-dominated chronosequence in mid- to late succession located in northern Sweden. Over three growing seasons in 2012–2014, GHG flux measurements were made in situ and samples were collected for laboratory analyses. We predicted that P. schreberi-covered forest floor GHG fluxes would be related to distinct trends in the soil properties and microbial community along the wildfire chronosequence. Although we found no overall effect of TSF on GHG emissions, there was evidence that soil C/N, one of the few properties to show a trend with time, was inversely linked to ecosystem respiration. We also found that local microclimatic conditions and site-dependent properties were better predictors of GHG fluxes than TSF. This shows that site-dependent co-variables (that is, forest floor climate and plant-soil properties) need to be considered as well as TSF to predict GHG emissions as wildfires become more frequent, extensive and severe

    Short-term local expression of a PD-L1 blocking antibody from a self-replicating RNA vector induces potent antitumor responses

    Get PDF
    Immune checkpoint blockade has shown anti-cancer efficacy, but requires systemic administration of monoclonal antibodies (mAbs), often leading to adverse effects. To avoid toxicity, mAbs could be expressed locally in tumors. We developed adeno-associated virus (AAV) and Semliki Forest virus (SFV) vectors expressing anti-programmed death ligand 1 (aPDL1) mAb. When injected intratumorally in MC38 tumors, both viral vectors led to similar local mAb expression at 24 h, diminishing quickly in SFV-aPDL1-treated tumors. However, SFV-aPDL1 induced >40% complete regressions and was superior to AAV-aPDL1, as well as to aPDL1 mAb given systemically or locally. SFV-aPDL1 induced abscopal effects and was also efficacious against B16-ovalbumin (OVA). The higher SFV-aPDL1 antitumor activity could be related to local upregulation of interferon-stimulated genes because of SFV RNA replication. This was confirmed by combining local SFV-LacZ administration and systemic aPDL1 mAb, which provided higher antitumor effects than each separated agent. SFVaPDL1 promoted tumor-specific CD8 T cells infiltration in both tumor models. In MC38, SFV-aPDL1 upregulated co-stimulatory markers (CD137/OX40) in tumor CD8 T cells, and its combination with anti-CD137 mAb showed more pronounced antitumor effects than each single agent. These results indicate that local transient expression of immunomodulatory mAbs using non-propagative RNA vectors inducing type I interferon (IFN-I) responses represents a potent and

    The CANDELS/SHARDS multiwavelength catalog in GOODS-N : photometry, photometric redshifts, stellar masses, emission-line fluxes, and star formation rates

    Get PDF
    We present a WFC3 F160W (H-band) selected catalog in the CANDELS/GOODS-N field containing photometry from the ultraviolet (UV) to the far-infrared (IR), photometric redshifts, and stellar parameters derived from the analysis of the multiwavelength data. The catalog contains 35,445 sources over the 171 arcmin(2) of the CANDELS F160W mosaic. The 5 sigma detection limits (within an aperture of radius 0 ''.17) of the mosaic range between H = 27.8, 28.2, and 28.7 in the wide, intermediate, and deep regions, which span approximately 50%, 15%, and 35% of the total area. The multiwavelength photometry includes broadband data from the UV (U band from KPNO and LBC), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), near-to-mid IR (HST/WFC3 F105W, F125W, F140W, and F160W; Subaru/MOIRCS Ks; CFHT/Megacam K; and Spitzer/IRAC 3.6, 4.5, 5.8, and 8.0 mu m), and far-IR (Spitzer/MIPS 24 mu m, HERSCHEL/PACS 100 and 160 mu m, SPIRE 250, 350 and 500 mu m) observations. In addition, the catalog also includes optical medium-band data (R similar to 50) in 25 consecutive bands, lambda = 500-950 nm, from the SHARDS survey and WFC3 IR spectroscopic observations with the G102 and G141 grisms (R similar to 210 and 130). The use of higher spectral resolution data to estimate photometric redshifts provides very high, and nearly uniform, precision from z = 0-2.5. The comparison to 1485 good-quality spectroscopic redshifts up to z similar to 3 yields Delta z/(1 + z(spec)) = 0.0032 and an outlier fraction of eta = 4.3%. In addition to the multiband photometry, we release value-added catalogs with emission-line fluxes, stellar masses, dust attenuations, UV- and IR-based star formation rates, and rest-frame colors

    Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.

    Get PDF

    International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi

    Get PDF
    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.This study was supported by an National Health and Medical Research Council of Australia (NH&MRC) grant [#APP1031952] to W Meyer, S Chen, V Robert, and D Ellis; CNPq [350338/2000-0] and FAPERJ [E-26/103.157/2011] grants to RM Zancope-Oliveira; CNPq [308011/2010-4] and FAPESP [2007/08575-1] Fundacao de Amparo Pesquisa do Estado de So Paulo (FAPESP) grants to AL Colombo; PEst-OE/BIA/UI4050/2014 from Fundacao para a Ciencia e Tecnologia (FCT) to C Pais; the Belgian Science Policy Office (Belspo) to BCCM/IHEM; the MEXBOL program of CONACyT-Mexico, [ref. number: 1228961 to ML Taylor and [122481] to C Toriello; the Institut Pasteur and Institut de Veil le Sanitaire to F Dromer and D Garcia-Hermoso; and the grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG) to CM de Almeida Soares and JA Parente Rocha. I Arthur would like to thank G Cherian, A Higgins and the staff of the Molecular Diagnostics Laboratory, Division of Microbiology and Infectious Diseases, Path West, QEII Medial Centre. Dromer would like to thank for the technical help of the sequencing facility and specifically that of I, Diancourt, A-S Delannoy-Vieillard, J-M Thiberge (Genotyping of Pathogens and Public Health, Institut Pasteur). RM Zancope-Oliveira would like to thank the Genomic/DNA Sequencing Platform at Fundacao Oswaldo Cruz-PDTIS/FIOCRUZ [RPT01A], Brazil for the sequencing. B Robbertse and CL Schoch acknowledge support from the Intramural Research Program of the NIH, National Library of Medicine. T Sorrell's work is funded by the NH&MRC of Australia; she is a Sydney Medical School Foundation Fellow.info:eu-repo/semantics/publishedVersio
    • 

    corecore